• Title/Summary/Keyword: biofilm reactor

Search Result 191, Processing Time 0.029 seconds

The Recycling Water Treatment of High Density Fish Culture System Using the Aerated Submerged Filter -1. Ammonia Removal Characteristics in Sea Water- (폭기식 잠수여상을 이용한 고밀도 양식장의 순환수 처리 -1. 해수중의 암모니아 제거 특성-)

  • LEE Heon-Mo;LEE Jae-Kwan;JUNG Byung-Gon;YANG Byung-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.5
    • /
    • pp.502-509
    • /
    • 1993
  • Submerged filter process was used to evaluate the nitrifying efficiency of ammonia in the recycling water of marine aquatic culture system. The ammonia removal efficiency was achieved as high as $99\%$ at the hydraulic surface loading rate of up to $4.3{\ell}/m^2-day$. And the nitrite accumulation did not occur in the reactor even when the hydraulic surface loading rate of up to $36.8{\ell}/m^2day$ was applied. In the present study, the relationship between the effluent ammonia concentration and ammonia surface loading rate was formulated as an equation. The attachment rate of biofilm on the filter media at the ammonia surface loading rate of 62.3 and $311.7mg/m^2day$ was 15 and $55mg/m^2-day$, respectively, showing the linear relationship between the attachment rate and ammonia loading rates. Biofilm thickness and density of the filter media were found to be the function of the ammonia loading rate.

  • PDF

Production of Erythromycin Using a Carrier-Spported Mycelial Growth in a Fluidized-Bed Bioreactor (균사 증식 담체를 이용한 유동층 생물반응기에서 Erythromycin의 생산)

  • 김성환;배신규김정희
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.241-245
    • /
    • 1989
  • A carriersupported mycelial growth of Sreptomyces erythreus was applied to erythromycin fermentation sistem using celite as a support material. Hyphal growth through the pore matrices of the materials showed anchorages and provided a stable biofilm growth. When the phospate concentration was limited to 0.8g corn steep liquor/L(corresponding to 40mg KH2PO4/L), the specific production rate of erythromycin was increased from 557$\mu$g/g-cell.hr under unlimited condition to 2, 898 $\mu$g/g-cell.hr. A fluidized-bed bioreactor was operated for erythromycin production by a repeated fed-batch mode. The control of free mycelial concentration and the extension of production phase were considered important to maintain the reactor productivity at a desired level. The erythromycin production under phosphate-limited condition could be maintained for at least 600hrs.

  • PDF

Polypropylene Bundle Attached Multilayered Stigeoclonium Biofilms Cultivated in Untreated Sewage Generate High Biomass and Lipid Productivity

  • Kim, Byung-Hyuk;Kim, Dong-Ho;Choi, Jung-Woon;Kang, Zion;Cho, Dae-Hyun;Kim, Ji-Young;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1547-1554
    • /
    • 2015
  • The potential of microalgae biofuel has not been realized because of the low productivity and high costs associated with the current cultivation systems. In this study, a new low-cost and transparent attachment material was tested for cultivation of a filamentous algal strain, Stigeoclonium sp., isolated from wastewater. Initially, the different materials tested for Stigeoclonium cultivation in untreated wastewater were nylon mesh, polyethylene mesh, polypropylene bundle (PB), polycarbonate plate, and viscose rayon. Among the materials tested, PB led to a firm attachment, high biomass (53.22 g/m2, dry cell weight), and total lipid yield (5.8 g/m2) with no perceivable change in FAME profile. The Stigeoclonium-dominated biofilm consisted of bacteria and extracellular polysaccharide, which helped in biofilm formation and for effective wastewater treatment (viz., removal efficiency of total nitrogen and total phosphorus corresponded to ~38% and ~90%, respectively). PB also demonstrated high yields under multilayered cultivation in a single reactor treating wastewater. Hence, this system has several advantages over traditional suspended and attached systems, with possibility of increasing areal productivity three times using Stigeoclonium sp. Therefore, multilayered attached growth algal cultivation systems seem to be the future cultivation model for large-scale biodiesel production and wastewater treatment.

Optimization of membrane fouling process for mustard tuber wastewater treatment in an anoxic-oxic biofilm-membrane bioreactor

  • Chai, Hongxiang;Li, Liang;Wei, Yinghua;Zhou, Jian;Kang, Wei;Shao, Zhiyu;He, Qiang
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.196-202
    • /
    • 2016
  • Membrane bioreactor (MBR) technology has previously been used by water industry to treat high salinity wastewater. In this study, an anoxic-oxic biofilm-membrane bioreactor (AOB-MBR) system has been developed to treat mustard tuber wastewater of 10% salinity (calculated as NaCl). To figure out the effects of operating conditions of the AOB-MBR on membrane fouling rate ($K_V$), response surface methodology was used to evaluate the interaction effect of the three key operational parameters, namely time interval for pump (t), aeration intensity ($U_{Gr}$) and transmembrane pressure (TMP). The optimal condition for lowest membrane fouling rate ($K_V$) was obtained: time interval was 4.0 min, aeration intensity was $14.6 m^3/(m^2{\cdot}h)$ and transmembrane pressure was 19.0 kPa. And under this condition, the treatment efficiency with different influent loads, i.e. 1.0, 1.9 and $3.3kgCODm^{-3}d^{-1}$ was researched. When the reactor influent load was less than $1.9kgCODm^{-3}d^{-1}$, the effluent could meet the third discharge standard of "Integrated Wastewater Discharge Standard". This study suggests that the model fitted by response surface methodology can predict accurately membrane fouling rate within the specified design space. And it is feasible to apply the AOB-MBR in the pickled mustard tuber factory, achieving satisfying effluent quality.

Application of Teeth Whitening LED for Prevention of Dental Caries : Antimicrobial Photodynamic Therapy Approach (치아우식 예방을 위한 치아미백기의 활용 : 광역동 치료로서의 접근)

  • Park, Choa;Park, Howon;Lee, Juhyun;Seo, Hyunwoo;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.1
    • /
    • pp.70-77
    • /
    • 2020
  • The present study is aimed to assess the effect of antimicrobial photodynamic therapy (aPDT) on Streptococcus mutans biofilm through teeth whitening light emitting diode (LED). Planktonic and dynamic biofilm state cultures of S. mutans were used. Erythrosine 20 μM/L was used as the photosensitizer. Irradiation was performed by exposing cultures to clinic and homecare whitening LEDs for 15 minutes. The viability was measured through Colony Forming Unit counts and confocal laser scanning microscopy. aPDT using whitening LEDs and erythrosine significantly decreased the CFU count of S. mutans compared to that in the control group. Dynamic biofilm group showed more resistant features to aPDT compared with planktonic state. Clinic and homecare whitening LED device showed similar antimicrobial effect. The whitening LED, which could irradiate the entire oral arch, showed a significant photodynamic effect on cariogenic S. mutans biofilm. aPDT mediated by erythrosine and LEDs used for teeth whitening exhibited promising antimicrobial activity.

Surface Roughness and Microbial Adhesion After Finishing of Alkasite Restorative Material (피니싱 처리 이후 알카자이트 수복재의 표면거칠기와 미생물 부착)

  • Park, Choa;Park, Howon;Lee, Juhyun;Seo, Hyunwoo;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.2
    • /
    • pp.188-195
    • /
    • 2020
  • This study is aimed to evaluate and compare the surface roughness and microbial adhesion to alkasite restorative material (Cention N), resin-modified glass ionomer (RMGI), and composite resin. And to examine the correlation between bacterial adhesion and surface roughness by different finishing systems. Specimens were fabricated in disk shapes and divided into four groups by finishing methods (control, carbide bur, fine grit diamond bur, and white stone bur). Surface roughness was tested by atomic force microscope and surface observation was performed by scanning electron microscope. Colony forming units were measured after incubating Streptococcus mutans biofilm on specimens using CDC biofilm reactor. Cention N surface roughness was less than 0.2 ㎛ after finishing procedure. Control specimens of resin and Cention N specimens were significantly (p = 0.01) rougher. Pearson correlation coefficient (PCC = 0.13) indicated a weak correlation between surface roughness and S. mutans adhesion to the specimens. Compared with resin specimens, RMGI and Cention N showed lower microbial adhesion. Surface roughness and bacterial adhesion were not significantly different, regardless of the finishing systems.

A Study on Degradation of Nitrogen Compounds by Biofilm Reactor Packed with Porous Media (다공성 담체를 이용한 생물막 반응조의 질소화합물 분해에 관한 연구)

  • Cho, Hae-Mi;Kim, So-Yeon;Yoon, Ji-Hyun;Han, Gee-Bong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.776-780
    • /
    • 2007
  • A biofilm reactor packed with porous media was investigated for nitrogen removal of synthetic wastewater. The effect of different loading rates on the nitrification was sustained to be steady state with stable efficiency of 50~60% in the range of $0.0083{\sim}0.017gNH_4-N/gMLVSS{\cdot}day$ of F/MN ratio and $1{\sim}2kgNH_4-N/m^3{\cdot}day$ of media volumetric loading rate. However, nitrification efficiency was rapidly decreased to 25~30% as F/MN ratio and media volumetric loading rate were increased to the range of $0.025{\sim}0.034gNH_4-N/gMLVSS{\cdot}day$ and $3{\sim}4kgNH_4-N/m^3{\cdot}day$, respectively. Also the consumption rate of alkalinity was higher under 8 hours of HRT than unter 6 hours of HRT. Accordingly the influent loading rate variation by detention time with influent flow influenced more on the nitrification efficiency than the influent loading rate variation by the influent concentration did. The temperature effect on the nitrification showed 25% higher in summer than in winter as the results reported by other researchers who reported that the nitrification efficiency in biofilm showed 20% increase from 55% to 75% when the temperature was raised from $20^{\circ}C$ to $25^{\circ}C$. Denitrification with sulfur-media showed 90% removal efficiency under steady-state with no effect from the increase of influent concentration and empty bed contact time (EBCT) change such as EBCT was decreased from 8.4 hr to 4.3 hr and $NO_3-N$ loading rate was changed within the range of $0.1{\sim}0.4kgNO^3-N/m^3{\cdot}day$. Accordingly Denitrification with sulfur-media is feasible for post denitrification at the concentration less than $80mgNO^3-N/L$.

Biological Treatment of Raw Water for Organics Removal (생물학적(生物學的) 처리(處理)에 의한 원수(原水)의 유기물제거(有機物除去)에 관한 연구(研究))

  • Cho, Kwang Myeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.43-50
    • /
    • 1986
  • A research was performed to examine the applicability of aerobic fixed-biofilm reactors for removal of biodegradable organics in raw waters. Crushed briquette ashes or granite were utilized as media. Experiments were carried out by feeding packed bed reactors with a synthetic raw water prepared by dissolving phenol in tap water with other inorganic nutrients. Results of the research showed that the effluent TBOD concentrations were lower than 6 mg/l when the influent BOD concentrations were kept below 50 mg/l and a detention time of about 2.7 hours was provided. The SBOD concentrations of the treated waters should be less than 5 mg/l since the effluent SS could be removed by conventional water treatment methods such as coagulation and filtration. It was also found that most of the SS in the effluents were humic materials since the effluent SS caused little BOD. This means the biofilm in the reactor was in endogenous respiration phase due to low F/M ratio. According to the results of this study, it is recommended to pretreat any raw water contaminated with biodegradable organics in an aerobic fixed biofilm reactor with a detention time of 2 to 3 hours.

  • PDF

A comparative study of dyeing wastewater treatment capability for Aerobic Packed/Fluidized-Bed and Moving Media Complete Mixing Activated Sludge system (염색폐수 처리성능에 대한 호기성 고정 및 유동층 생물막공법과 회전매체를 가진 완전혼합 활성슬러지 공법의 비교연구)

  • 김홍태;김규창
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.525-532
    • /
    • 1999
  • This study was conducted to evaluate capability of dyeing wastewater treatment for 3 type reactors. These reactors were Packed Bed Reactor(PBR), Fluidized Bed reactor(FBR) and Moving Media Complete Mixing Activated Sludge reactor(MMCMAS). Experiments of PBR and FBR were performed by various packing ratios and organic loading rates, experiments of MMCMAS were performed by various organic loading rates. In order to obtain ${SBOD}_5$ removal efficiencies of more than 90%, the F/Mv ratios of PBR, FBR, MMCMAS were 0.11 kgBOD/kgMLVSS$\cdot$d, 0.12 kgBOD/kgMLVSS$\cdot$d, and 0.37 kgBOD/kgMLSS$\cdot$d, respectively. So MMCMAS system which has more active microorganisms showed better capability of organic removal and also stronger dynamic and shock loadings than those of PBR and FBR. In PBR and FBR, the media packing ratio of 20% showed better performance of organic matters removal effciencies than 10% and 30%, but sludge production rate at media packing ratio of 30% was relatively lower than that of 10% and 20%. When more than 90% organic matters removal efficiency was obtained, the ratios of attached biomass to total biomass at PBR, FBR, MMCMAS were 89~99%, 87~98%, and 54~80%, respectively. The ratio of attached biomass to total biomass was low in MMCMAS. This was formation of thin biofilm due to shear force between rotaing disc and water. The average sludge production rates(kgVSS/kgBODrem.) of PBR, FBR and MMCMAS were 0.20, 0.29 and 0.54, respectively.

  • PDF

Application of Biofilter Using Fibril-form Matrix for Odor Gas Removal

  • Lee, Gwang-Yeon;Jeong, Gwi-Taek;Lee, Kyoung-Min;Snuwoo, Chang-Shin;Lee, Woo-Tae;Cha, Jin-Myoung;Jang, Young-Seon;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.247-251
    • /
    • 2005
  • This research was performed for developing of biological treatment process of odor gas such as MEK, $H_{2}S$, and toluene, which is generated from the food waste recycling process. To establish the operational conditions of odor gas removal by small-scale biofiltration equipment, it was continuously operated by using toluene as a treating odor object. When the odor treating microorganisms were adhered to fibril form biofilter, high removal efficiency over 93% was obtained by biofilm formation. At 400 ppm of inlet odor gas concentration and 10 sec of retention time, the removal efficiency was 76% and 93% in 1st stage reactor and 2nd stage reactor, respectively. However, the removal efficiency remained over 97% at the operational conditions above 15 sec of retention time.

  • PDF