• Title/Summary/Keyword: biofilm growth

Search Result 199, Processing Time 0.029 seconds

Comparison of Electricity Generation and Microbial Community Structure in MFCs Fed with Different Substrates (미생물연료전지에서 공급기질에 따른 전기발생량 및 미생물 군집구조 비교)

  • Yu, Jaecheul;Cho, Haein;Cho, Sunja;Lee, Taeho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.608-613
    • /
    • 2010
  • Electricity generation of microbial fuel cells (MFC) is greatly affected by the kind of feed substrates because substrates would change microbial community of electrochemically active bacteria (EAB) able to transfer electrons to electrode. The effect of different substrates on electricity generation and microbial community of MFC was investigated. Two-chamber MFCs fed with acetate (A-MFC), butyrate (B-MFC), propionate (P-MFC), glucose (G-MFC) and a mixture (M-MFC) of the 4 substrates (acetate : butyrate : propionate : glucose = 1 : 1 : 1 : 1 as $COD_{Cr}$ base) were operated under continuous mode. The maximum power density was found from the M-MFC ($190W/m^3$) which showed the lowest internal resistance ($89{\Omega}$). The maximum power densities of the pure substrates feed MFCs were in order of A-MFC ($25W/m^3$), P-MFC ($21W/m^3$), B-MFC ($20W/m^3$) and G-MFC ($9W/m^3$). In DGGE analysis, the microbial community structure in suspension was quite different from each others depending on feed substrates, while the community structure in the biofilm was relatively similar regardless of the substrates. This result suggests that the feed substrates would affect the microbial community of suspended growth bacteria than attached growth bacteria resulting in difference of electricity generation in MFCs.

Spatial and Temporal Distribution of a Biocontrol Bacterium Bacillus licheniformis N1 on the Strawberry Plants

  • Kong, Hyun-Gi;Lee, Hyoung-Ju;Bae, Ju-Young;Kim, Nam-Hee;Moon, Byung-Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.238-244
    • /
    • 2010
  • Spatial and temporal distribution of Bacillus licheniformis N1 was investigated over time on the leaves, petioles and crowns of the strawberry plants. Bacterial population on the strawberry plants was quantified over time by selective plating. Bacterial population of N1 containing a plasmid pWH43G carrying green fluorescent protein (GFP) declined relatively faster on the plant surface as compared to the Strain N1 itself. However, this result was found to be enough to utilize the strain to visualize bacterial colonization on the plant surface. When B. licheniformis N1 was treated together with Silwet L-77 at 0.03%, the bacterial population on plant surface persisted for up to 7 days. B. licheniformis N1 (pWH43G) containing Silwet L-77 was applied on the strawberry plants and the GFP expressing bacteria were visualized by confocal laser scanning microscopy. Bacterial persistence was also investigated in a growth chamber and in a plastic house after N1 bioformulation treatment on the strawberry plant. The Strain N1 colonized three different tissues well and persisted over 3 to 5 days on the strawberry plants. They formed bacterial aggregates on plant surfaces for at least 3 days, resulting in a biofilm to resist fluctuating plant surface environment. However, the bacterial persistence dramatically declined after 7 days in all tested tissues in a plastic house. This study suggest that B. licheniformis N1 colonizes the strawberry plant surface and persists for a long time in a controlled growth chamber, while it can not persist over 7 days on the plant surface in a plastic house.

Negative Pressure Wound Therapy of Chronically Infected Wounds Using 1% Acetic Acid Irrigation

  • Jeong, Hii Sun;Lee, Byeong Ho;Lee, Hye Kyung;Kim, Hyoung Suk;Moon, Min Seon;Suh, In Suck
    • Archives of Plastic Surgery
    • /
    • v.42 no.1
    • /
    • pp.59-67
    • /
    • 2015
  • Background Negative-pressure wound therapy (NPWT) induces angiogenesis and collagen synthesis to promote tissue healing. Although acetic acid soaks normalize alkali wound conditions to raise tissue oxygen saturation and deconstruct the biofilms of chronic wounds, frequent dressing changes are required. Methods Combined use of NPWT and acetic acid irrigation was assessed in the treatment of chronic wounds, instilling acetic acid solution (1%) beneath polyurethane membranes twice daily for three weeks under continuous pressure (125 mm Hg). Clinical photographs, pH levels, cultures, and debrided fragments of wounds were obtained pre- and posttreatment. Tissue immunostaining (CD31, Ki-67, and CD45) and reverse transcription-polymerase chain reaction (vascular endothelial growth factor [VEGF], vascular endothelial growth factor receptor [VEGFR]; procollagen; hypoxia-inducible factor 1 alpha [HIF-1-alpha]; matrix metalloproteinase [MMP]-1,-3,-9; and tissue inhibitor of metalloproteinase [TIMP]) were also performed. Results Wound sizes tended to diminish with the combined therapy, accompanied by drops in wound pH (weakly acidic or neutral) and less evidence of infection. CD31 and Ki-67 immunostaining increased (P<0.05) post-treatment, as did the levels of VEGFR, procollagen, and MMP-1 (P<0.05), whereas the VEGF, HIF-1-alpha, and MMP-9/TIMP levels declined (P<0.05). Conclusions By combining acetic acid irrigation with negative-pressure dressings, both the pH and the size of chronic wounds can be reduced and infections be controlled. This approach may enhance angiogenesis and collagen synthesis in wounds, restoring the extracellular matrix.

Anticariogenic Properties of the Extract of Saururus chinensis (삼백초 추출물의 항치아우식 효과)

  • Lee, Da-Hong;Yu, Hyeon-Hee;Jung, Su-Young;Moon, Hae-Dalma;Park, Ki-Bong;Cho, Soo-Min;Jeon, Byung-Hun;Kim, In-Sook;You, Yong-Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.647-651
    • /
    • 2007
  • It has been well established that S. mutans is the major etiological agent in dental caries, one of the most common oral diseases worldwide. The present study was designed to investigate the effect of Saururus chinensis (S. chinensis) ethanol extracts on the growth, acid production, biofilm formation, adhesion, and insoluble glucan synthesis of S. mutans. The ethanol extracts of S. chinensis showed concentration dependent inhibitory activity against the growth and acid production of S. mutans, and produced significant inhibition at the concentration of 0.025, 0.05, 0.1, 0.2 and 0.4 mg/ml compared to the control group. The extracts markedly inhibited S. mutans adherence to HA treated with saliva, and cell adherence was repressed by more than 80% at the concentration of 0.05 mg/ml and complete inhibition was observed at the concentration of 0.4 mg/ml. On the activity of glucosyltransferase which synthesizes water insoluble glucan form sucrose, ethanol extract of S. chinensis showed more than 10% inhibition over the concentration of 0.025 mg/ml. The synthesis of insoluble glucan was decreased in the presence of 0.025 ${\sim}$ 0.4 mg/ml of the ethanol extract of S. chinensis. Our research strongly suggested S. chinensis was a promising natural product for the prevention of dental caries.

Identification, Characterization, and Efficacy Evaluation of Bacillus velezensis for Shot-Hole Disease Biocontrol in Flowering Cherry

  • Han, Viet-Cuong;Yu, Nan Hee;Yoon, Hyeokjun;Ahn, Neung-Ho;Son, Youn Kyoung;Lee, Byoung-Hee;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.115-130
    • /
    • 2022
  • Though information exists regarding the pathogenesis of the shot-hole disease (SH) in flowering cherry (FC), there has been a lack of research focusing on SH management. Therefore, here, we investigated the inhibitory activities of antagonistic bacteria against SH pathogens both in vitro and in vivo as well as their biochemical characteristics and bioactive compounds. Two biosurfactant-producing bacterial antagonists, identified as Bacillus velezensis strains JCK-1618 and JCK-1696, exhibited the best effects against the growth of both bacterial and fungal SH pathogens in vitro through their cell-free culture filtrates (CFCFs). These two strains also strongly inhibited the growth of the pathogens via the action of their antimicrobial diffusible compounds and antimicrobial volatile organic compounds (VOCs). Crude enzymes, solvent extracts, and biosurfactants of the two strains exhibited antimicrobial activities. Liquid chromatography/electrospray ionization time-of-flight mass spectrometric analysis of the partially purified active fractions revealed that the two antagonists produced three cyclic lipopeptides, including iturin A, fengycin A, and surfactin, and a polyketide, oxydifficidin. In a detached leaf assay, pre-treatment and co-treatment of FC leaves with the CFCFs led to a large reduction in the severity of the leaf spots caused by Epicoccum tobaicum and Bukholderia contaminans, respectively. In addition, the two antagonists produced indole-3-acetic acid, siderophore, and a series of hydrolytic enzymes, along with the formation of a substantial biofilm. To our knowledge, this is the first report of the antimicrobial activities of the diffusible compounds and VOCs of B. velezensis against the SH pathogens and their efficiency in the biocontrol of SH.

A Study on Bio-chemical Sewer Pipe Corrosion In Korea (하수관거의 생·화학적 부식특성에 관한 연구)

  • Kim, Hwan-Gi;Song, Ho-Myeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.565-573
    • /
    • 2000
  • Sewer pipe in Korea is generally constructed with concrete pipes. Moreover, the sewer system is susceptible to the corrosion problem due to the regulation employing anaerobic treatment processes, such as domestic sewage treatment facilities, nightsoil septic tanks and so on. The objective of this study is investigated to experimental test of $H_2S$ production rate affecting corrosion of sewer pipe in Korea. In this study, tube-type and sealed-type reactor were used to examine the reactions in the microorganism suspended growth and biofilm. Furthermore. concentration changes were investigated with COD and sulfate reduction in each reactor. Sulfide production rate was $50.4mg-H_2S/g-VSS{\cdot}d$ in the sealed-type reactor and in the tube-type biofilm reactor was $2.8{\sim}18.8g-H_2S/m^2{\cdot}d$.

  • PDF

Studies on a Toxin/Antitoxin System in Streptococcus iniae (어류병원균 Streptococcus iniae의 toxin/antitoxin system에 대한 연구)

  • Yoon, Seongyong;Kim, Yeon Ha;Jeun, Moonjung;Seong, Minji;Yoo, Ah Young;Lee, Donghee;Moon, Ki Hwan;Kang, Ho Young
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.97-104
    • /
    • 2019
  • Streptococcus iniae is a typical fish pathogen causing streptococcosis and it can also cause zoonotic infectious diseases. We studied S. iniae FP5228 isolated from infected olive flounder in Wando, Korea. In a study to find virulence factors in FP5228, we found that the number of live bacteria decreased dramatically in culture medium containing S. iniae FP5228 for more than 24 hr. This phenomenon was hypothesized to be related to Toxin ${\zeta}$ and Antitoxin ${\varepsilon}$ genes, components of the Toxin/ Antitoxin (TA) system on the 14 kb plasmid of FP5228. We used a protein overexpression system to identify it. The pBP1140 vector system was constructed to regulate the expression of Toxin ${\zeta}$ and Antitoxin ${\varepsilon}$ by IPTG and Arabinose. E. coli/pBP1140 strain grew slowly in early growth under toxin expression condition, and it was confirmed by microscopic observation that the strain became longer. S. iniae CK287, lacking a 14 kb plasmid of S. iniae FP5228 strain, was constructed. CK287 bacterial cells did not show rapid killing during culture, and the ability to produce biofilm was also decreased, and toxicity was weakened in cytotoxicity test and fish test. These results suggest that the TA system is involved in physiological regulation and expression of virulence factors in S. iniae FP5228.

Temperature Sensitivity of Sigma Background Is Suppressed by the Disruption of ScKNS1 in Saccharomyces cerevisiae (ScKns1 결손에 의한 Saccharomyces cerevisiae ${\Sigma}1278b$ 균주의 온도 민감성 억제 효과)

  • Park, Yun-Hee;Park, Hee-Moon
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.167-169
    • /
    • 2011
  • The Saccharomyces cerevisiae S288c strain does not show haploid and diploid filamentous growth, and biofilm formation, because it has a flo8 nonsense mutation unlike ${\Sigma}1278b$ strain which has a FLO8 gene. During the heat stress experiments to investigate the role of ScKns1, LAMMER kinase in S. cerevisiae, we found that ${\Sigma}1278b$ strain revealed heat sensitivity at $37^{\circ}C$, a mild heat stress in contrast to S288c strain. We also found that the disruption of ScKns1 and the addition of sorbitol suppress heat sensitivity of ${\Sigma}1278b$ strain. These results suggest the possibility that Flo8 and ScKns1 may interact to transducer a signal for regulating heat stress through a novel signaling pathway.

Analysis of Gene Expression in response to acid stress of Streptococcus mutans Isolated from a Korean Child (한국인 아동으로부터 분리한 Streptococcus mutans 의 산 스트레스에 따른 유전자 발현변화 분석)

  • Kang, Kyung-Hee;Kim, Young-Kwon;Lee, Hyung-Suk;Jin, Ing-Ryol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2990-2996
    • /
    • 2009
  • S. mutans, one of a major causal agents of dental caries, is component of the dental plaque and produces various organic acids such as lactic acid as the end-product of glycolysis. In this study, we are interested in comparing the gene expression of acid-shocked and control cells of S. mutans isolated from Korean with caries. Expression levels of gtfB, gtfC, gtfD and ftf were analyzed by Real-time PCR, when the cells were grown under 20 mM lactic acid stress in the exponential phase. The data showed reduced expression of these genes. S. mutans is known to have developed a variety of mechanisms to tolerate acid sterss. A more detailed analysis of the functions and interactions of acid stress proteins connecting the growth, stress tolerance, biofilm formation is under way.

Removal characteristics of NOMs in a slow sand filter at different media depth and operation time (완속여과공정에서 운전시간 및 여층깊이에 따른 자연유기물질(NOM) 제거 특성)

  • Park, Noh-Back;Park, Sang-Min;Seo, Tae-Kyeong;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.467-473
    • /
    • 2008
  • Natural organic matter (NOM) removal by physico-chemical adsorption and biological oxidation was investigated in five slow sand filters with different media depths. Non-purgeable dissolved organic carbon(NPDOC) and $UV_{254}$ absorbance were measured to evaluate the characteristics of NOM removal at different filter depths. Removal efficiency of NOM was in the range of 10-40% throughout the operation time. At start-up of the filters packed with clean sand media, NOM was probably removed by physico-chemical adsorption on the surface of sand through the overall layer of filter bed. However, when Schumutzdecke layer was built up after 30 days operation, the major portion of NPDOC was removed by biological oxidation and/or bio-sorption in lower depth above 50 mm. NOM removal rate in the upper 50 mm filter bed was $0.82hr^{-1}$. It was about 20 times of the rate($0.04hr^{-1}$) in the deeper filter bed. Small portion of NPDOC could be removed in the deeper filter bed by both bio-sorption and biodegradation. SEM analysis and VSS measurement clearly showed the growth of biofilm in the deeper filter bed below 500 mm, which possibly played an important role in the NOM removal by biological activity besides the physco-chemical adsorption mechanism