• Title/Summary/Keyword: biodegradable COD

Search Result 113, Processing Time 0.018 seconds

Measurement of Biological Activity in Pilot Scale Dyeing Wastewater Process by Using Respirometer (호흡률 측정기를 이용한 파일럿 스케일 염색폐수처리 장치에서의 생물학적 활성 측정)

  • Jeon Hyun Hee;Choi Kwang Keun;Yoon In Jun;Lee Jin Won
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.390-393
    • /
    • 2004
  • Oxygen uptake rate (OUR) was used as an indicator of microbial activity. In this study OUR at dyeing wastewater in the pilot plant was monitored to examine biological activity. Correlation between inlet COD concentration and maximum OUR showed that maximum OUR was proportional to inlet COD concentration. Changes in the OUR values reflected the changing waste load in the reactor. Consequently, OUR can be used to estimate biological activity of inlet COD concentration. This study showed that biodegradable COD at dyeing wastewater could be calculated from OUR and yield coefficient. Non-biodegradable COD was able to be calculated from a difference between initial COD concentration and biodegradable COD.

Organic Characteristic of Piggery Wastewater and Kinetic Estimation in Biofilm Reactor (생물막 반응조에서 돈사폐수의 유기물 특성 및 동력학계수 산정)

  • Rim, Jay-Myoung;Han, Dong-Joon;Kwon, Jae-Hyuk
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.51-60
    • /
    • 1996
  • This research was performed for the fundamental data using a advanced treatment process of piggery wastewater. Characteristics of influent wastewater was divided with various methods in fixed biofilm batch reasctor. Fractons of organic were divided into readily biodegradable soluble COD(Ss), slowly biodegradable COD(Xs), nonbiodegradable soluble COD($S_I$), and nonbiodegradable suspended COD($X_I$). Experimental results were summerized as following : i) biodegradable organics fraction in piggery wastewater was about 88.1 percent, and fraction of readily biodegradable soluble COD was about 66.1 percent. ii) Fractions of nonbiodegradable soluble COD was 11~12 percent, and soluble inert COD by metabolism was producted about 6~8 percent. iii) Active biomass fraction of attached biofilm was about 54.7 percent, and substrate utilization rate and maximum specific growth rate of heterotrophs were $8.315d^{-1}$ and $3.823d^{-1}$, respectively.

  • PDF

Respirometry for the Assessment of Organics Biodegradability in Municipal Wastewater: I. Respirometry (호흡률법에 의한 하수의 생분해 특성 평가: I. 호흡률법)

  • Kim, Dong Han;Kim, Hee Jun;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Organics may be divided into biodegradable and nonbiodegradable fractions on the basis of biodegradability. Biodegradable organics may be subdivided into readily and slowly biodegradable fractions. As this biodegradability of organics in municipal wastewater has a great influence on the efficiency of a biological nutrient removal process, it has been assessed by respirometry. The respirometer, which consisted of a respiration chamber and a respiration cell, was used to measure the respiration rate of biomass utilizing the readily biodegradable organics. The readily biodegradable organics are about 10% of the COD in municipal wastewater. The adequate ratio of wastewater to sludge volume and the concentration of sludge are required in measuring the respiration rate due to the readily biodegradable organics. By using a biochemical oxygen demand test, the slowly biodegradable organics including biomass are estimated about 66% of COD. The soluble inert organics are about 11% of COD. On the basis of mass balance, the particulate inert organics are estimated about 13% of COD.

A Comparative Study on COD Fractionation Methods of Wastewater (하수의 COD 분류 시험 방법에 관한 비교 연구)

  • Kim, Sung-Hong;Yun, Jung-Won;Choi, Young-Gyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.387-394
    • /
    • 2010
  • The influent COD of municipal wastewater has been divided into 4 fractions; readily soluble biodegradable, slowly particulate biodegradable, soluble and particulate unbiodegradable COD. The mathematical modeling of biological wastewater treatment processes and the design and operation of nutrient removal plants require a reliable and accurate estimate of the composition of influent wastewater COD. COD utilization rate is proportional to the oxygen uptake rate(OUR), so a batch biodegradation test with OUR measurement has been effectively used for the determination of COD fractionation. But the mathematical model of COD utilization and heterotrophs synthesis is essential to interpret the OUR measurement. Mamais method is another method for determining readily biodegradable soluble COD. Like the OUR test method, batch biodegradation test is necessary but it does not require mathematical model. These two methods for determining COD fractionation are introduced here in detail. Experimental results showed that COD composition by Mamais method is not different to that by OUR test method so, either of them can be used.

Respirometry for COD Fractionation of Wastewater (미생물 호흡률 분석에 의한 하수의 유기물 분류)

  • Choi, Younggyun;Kim, Gyudong;Kim, Heejun;Kim, Yunjung;Chung, Taihak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.503-509
    • /
    • 2003
  • COD fractionation of primary settled municipal wastewater was conducted by respirometry. RBCOD (Readily Biodegradable COD) fraction was analyzed to be 21% of influent TCOD. However, SCOD fraction, analyzed by physical separation using $0.45{\mu}m$ membrane filter, was about 31% of TCOD. Therefore, 10% of soluble inert COD was comprised in TCOD. It means that kinetic analysis of activated sludge system was impossible because serious error would be occurred if SCOD was used as a biodegradable soluble component instead of RBCOD estimated from respirometry. In this study, RBCOD fraction of raw wastewater could be analyzed by respirometry within the error range of 57%. In addition, SBCOD (Slowly Biodegradable COD) content could be determined by kinetic simulation of the experimental results. SBCOD showed about 2-fold higher fraction (38% of TCOD) as compared with RBCOD.

Respirometry for the Assessment of Organics Biodegradability in Municipal Wastewater: II. Active Biomass and NUR (호흡률법에 의한 하수의 생분해 특성 평가: II. 활성미생물 및 NUR)

  • Kim, Dong Han;Kim, Gyu Dong;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.113-120
    • /
    • 2004
  • The biodegradability of organics has become essential for the design and modeling of a biological nutrient removal process. Respirometry for the batch test just with wastewater has been conducted to estimate active biomass and readily biodegradable organics in municipal wastewater simultaneously. Municipal wastewater contains significant active biomass, which is estimated about 17% of COD. Compared to the batch test seeded with sludge, the batch test just with wastewater represents a little higher readily biodegradable organics. This might be due to the different environment of the logarithmic growth of active biomass. The nitrate uptake rate test has been also performed for the estimation of the readily biodegradable organics. The nitrate uptake rate test results in a little higher readily biodegradable organics compared to the batch test seeded with sludge and similar organics compared to the batch test just with wastewater. This might be caused by the different sludge of a sequencing batch reactor process. Taking the result of the previous research into account, the readily biodegradable, slowly biodegradable, active biomass, soluble inert, and particulate inert organics are estimated about 11%, 49%, 17%, 11%, and 12% of COD, respectively.

The Effect of Solubilization Pretreatment Process on Anaerobic Digestion of Waste Activated Sludge (전처리 가용화 공정이 잉여슬러지 혐기성 소화효율에 미치는 영향)

  • Yoo, Ho-Sik;Ahn, Seyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.35-43
    • /
    • 2016
  • COD properties of waste activated sludge (WAS) were investigated for various solubilization rate of mechanical pretreatment method in anaerobic digestion process. Inert COD was 37.0% of total COD in untreated WAS. Particulate biodegradable COD was converted to soluble biodegradables and particulate unbiodegradables as solubilization was processed. Particulate unbiodegradable portion of COD in WAS can be increased as particulate biodegradable portion is decreased in case of relatively long SRT of biological treatment. Thus, COD properties of WAS should be investigated in case of relatively low particulate biodegradable COD, because of possible low effect of solubilization. COD removal rate in anaerobic digester was enhanced as much as 2.1% and 15.1% for solubilization rate 5% and 35% due to pretreatment, respectively. COD removal rate was increased from 25% to 40%, and methane gas generation was increased from $607m^3/d$ to $907m^3/d$ as particulate COD of WAS was solubilized to 35% in pretreatment facilities.

Evaluating the Potential Decolorization by Testing COD Fractions in Textile Wastewater Treatment Processes (염색폐수 처리공정에서 COD fraction의 변화와 색도처리)

  • Ha, Junsoo;Park, Hoowon;Kim, Sungwon;Yun, Yejin;Yu, Sungwhan;Lee, Sanghyup
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.537-542
    • /
    • 2008
  • Textile industry has been recognized as an important pollution source due to its consumption of large volumes of water and chemicals. Textile wastewater contains very diverse chemicals in types and composition, among them the presence of dyes is highly visible and undesirable. In spite of these problems, there has not been a proper control for the wastewater because many dyes are difficult to be degraded or decolorized due to their complex structure and synthetic characteristics. This study has been progressed to evaluate more easily the potential decolorization of advanced treatment processes. It has been surveyed with the Y textile complex wastewater treatment plant, the raw wastewater has appeared very difficult biodegradability by 4.7 of $CODcr/BOD_5$ and 1,158.9 degree of color. In view of CODcr fractions, biodegradable COD portion was 46.4%, colloidal COD and real soluble COD was 45.3% and 31.5% each others. From research on unit processes, the degradable coefficient (k) became from 0.065 to $0.125d^{-1}$ by the processes, the decolorization appeared best efficiency by 30.1% (458.4 degree) in pre-ozone process. On the effluent from the biological process, the filterable CODcr became 129.3 mg/L, the biodegradable portion appeared 64.7% (83.6 mg/L), and the fixed dissolved solid (FDS), non-reactivity (NR), appeared very heavy portion by 80.5% (1,659.0 mg/L).

Temporal and Spatial Analysis of Non-biodegradable Organic Pollutants in the Geumho River System (금호강 수계 난분해성 유기오염물질에 대한 시·공간적 특성 분석)

  • Jung, Kang-Young;Ahn, Jung-Min;Lee, Kyung-Lak;Lee, In-Jung;Yu, Jae-Jeong;Cheon, Se-Uk;Kim, Kyo-Sik;Han, Kun-Yeun
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1343-1362
    • /
    • 2015
  • As a result of analysis based on the observed data for BOD, COD and TOC in order to manage non-biodegradable organics in the Geumho River, COD/BOD ratio was analyzed as the occupying predominance proportion. In this study, the classification(changes in water quality measurement : increase, equal, decrease) and measurement of BOD and COD were analyzed for trends over the past 10 years from 2005 to 2014 in the Geumho River. The Geumho River is expected to need non-biodegradable organics management because BOD was found to be reduced 61.1% and COD was found to be increased 50%. As a result of the analysis of land use, the Geumho-A is a unit watershed area of $921.13km^2$, which is the most common area that is occupied by forests. The Geumho-B is a unit watershed area of $436.8km^2$, which is the area that is highest occupied by agriculture and grass of 24.84%. The Geumho-C is a unit watershed area of $704.56km^2$ accounted for 40.29% of the entire watershed, which is the area that is occupied by urban of 15.12%. Load of non-biodegradable organics, which is not easy biodegradable according to the discharge, appeared to be increased because flow coefficient of COD and TOC at the Geumho-B were estimated larger than 1 value. The management of non-point sources of agricultural land is required because the Geumho-B watershed area occupied by the high proportion of agriculture and field. In this segment it showed to increase the organics that biodegradation is difficult because the ratio of BOD and TOC was decreased rapidly from GR7 to GR8. Thus, countermeasures will be required for this.

The Analysis of Environmental Impact Load by Fibrous Raw Materials and Wet-end Additives in Papermaking Process (제지공정 섬유상 원재료 및 공정 첨가제의 환경오염 부하 분석)

  • Kim, Hyoung-Jin;Shin, Dong-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.50-58
    • /
    • 2005
  • It is generally known that paper industry is the second largest industry in the use of process water, and also have the highest environmental impact load in the contaminant sources. Paper is produced from the mixtures composed of 1% fibrous raw materials and 99% water. The optimum use of process water effects on the quality properties of paper and the environmental impact load of waste water treatment. In this research, the kinds of fibrous raw material & additives used in the paperboard production line were investigated, and the quantification of environmental loads and the environmental effects of process water on COD potential were evaluated. The NBDCODs were also analyzed from process water by the method of waste water treatment in paper mill and applied for the optimum use of recycling water, and zero effluent process. In the fibrous raw materials, KOCC caused the highest COD potentials, and sack paper & UKP was comparatively low. The NBDCOD of KOCC largely reduced after biological treatment because of easily biodegradable properties, but AOCC contained non-biodegradable materials. In chemical additives, COD was high in turns of rosin>starch>deaeration agent>dye, NBDCOD greatly reduced in starch and deaeration agent. In the case of 2 kinds of paperboard product, the COD potentials was mainly high in starch, AOCC and KOCC.