• Title/Summary/Keyword: biodegradable

Search Result 1,255, Processing Time 0.026 seconds

Pot Test and Preparation of PVA/Chitosan Blending Film Accoding to Molecular Weight of Chitosan (키토산의 분자량에 따른 PVA/Chitosan 블랜드필름의 제조와 토양분해 실험)

  • 이기창;황성규;김종완;정덕채;김판기
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.48-53
    • /
    • 1998
  • Chitin is known as biodegradable natural polymer. But, in spite of various application of chitin from waste marine sources, commercial use of chitin has been limited due to highly resistance to chemicals and the absense of proper solvents. We made various viscosity of chitosan from chitin by change of Mima's method through the deacetylation which is various condition of NaOH concentration, reaction time and temperature. Also, Polyvinyl alcohol/chitosan blend films were prepared by different solution blends containing the ratio of 5, 10, 15 and 20% chitosan and low, medium, high molecular weight of chitosan to find a more useful biodegradable polymer. Thermal and mechanical properties of PVA/chitosan blend films such as DSC, impact strength, tensile strength and morphological changes by SEM were determined. The 10-15% PVA/chitosan(low, medium) blend films were similar to PVA. Also, PVA/chitosan blend films at the laboratory soil test(Pot Test) were completely degraded in month with four kinds of soils by microorganisms.

  • PDF

Potential Use of Biopolymer-based Nanocomposite Films in Food Packaging Applications

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.691-709
    • /
    • 2007
  • Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. However, inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance are causing a major limitation for their industrial use. By the way, recent advent of nanocomposite technology rekindled interests on the use of natural biopolymers in the food packaging application. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased mechanical strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have huge potential for application in the active food packaging industry. In this review, recent advances in the preparation and characterization of natural biopolymer-based nanocomposite films, and their potential use in food packaging applications are addressed.

The Effect of Methylated Cyclodextrins on the Morphological Change of Poly(3-hydroxybutyrate) with and without the Formation of Inclusion Complex

  • Shin, Kyung-Moo;Dong, Tungalag;Inoue, Yoshio
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.351-351
    • /
    • 2006
  • The possible interactions between cyclodextrins and biodegradable polyesters were investigated. The hydrophobicity of cyclodextrin could be varied with the methyl substitution of host CD, and the possibility of IC formation and the types of interaction between respective CDs and polyesters were subsequently changed. Further, the effect of cyclodextrins on the morphological change of biodegradable polymer was shown to depend on the degree of IC formation between cyclodextrin and biodegradable polymer as well as on the type of interaction between respective CDs and polyesters. That is, the enhancement and/or the restriction of the crystallization of P(3HB) were observed by the incorporation of various kind of cyclodextrins with different cavity size and hydrophobicity.

  • PDF

Protein-based bio-plastics: formulation, processing, properties and applications

  • Guilbert Stephane;Gontard Nathalie;Morel Marie Helene
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.357-357
    • /
    • 2006
  • Many industrial sources of proteins can be used as raw materials to produce films, molded materials, and various hollow items either by "casting" techniques or by "thermoplastic processing". Combining proteins with natural fibbers, paper or biodegradable polyesters is very promising to form biodegradable composites witch take advantage of the barrier and mechanical properties of each component. Using nano-fillers to form nanocomposites has also been shown to be interesting to improve properties. Production, with low transformation cost, of protein based materials to form biodegradable materials with controlled functional properties for food uses, medical uses, packaging, agriculture, controlled release systems, etc. is discussed.

  • PDF

Drug Release Characteristics of Biodegradable Polymers for Stent Coating (스텐트 코팅용 생분해성 고분자의 약물 방출 특성)

  • 강혜수;김진설;김동운;강병철;이봉희;김범수
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.107-110
    • /
    • 2003
  • Biodegradable polymers, poly(lactic-co-glycolic acid) (PLGA), poly(3-hydroxybutyrate) (PHB), and medium chain length polyhydroxyalkanoates (MCL-PHA) containing rose bengal (model drug) were coated onto the surface of stainless steel (stent materials) and their in vitro release characteristics were investigated. Drug release increased with; decreasing PLGA concentration, increasing rose bengal concentration, and Increasing dip-coating duration. The order of drug release from the polymer coating was: PHB > PLGA > MCL-PHA. These results suggest that drug release can be controlled by: changing the concentration and type of polymer, the drug concentration, and the dip-coating duration.

Biodegradable Starch-Based Resin Reinforced with Continuous Mineral Fibres-Processing, Characterisation and Mechanical Properties

  • Wittek, Thomas;Tanimoto, Toshio
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.167-185
    • /
    • 2009
  • Environmental problems caused by extensive use of polymeric materials arise mainly due to lack of landfill space and depletion of finite natural resources of fossil raw materials like petroleum or natural gas. The substitution of synthetic petroleum-based resins with natural biodegradable resins appears to be one appropriate measure to remedy the above-mentioned situation. This study presents the development of a composite that uses environmentally degradable starch-based resin as matrix and natural mineral basalt fibres as reinforcement, and investigates the fibre's and the composite's mechanical properties. The tensile strength of single basalt fibres was verified by means of single fibre tensile tests and statistically investigated by means of a Weibull analysis. Prepreg sheets were manufactured by means of a modified doctor blade system and hot power press. The sheets were used to manufacture specimens with fibre volume contents ranging from 33% to 61%. Specimens were tested for tensile strength, flexural strength and interlaminar shear strength. Composites manufactured during this study exhibited tensile and flexural strength of up to 517 MPa and 157 MPa, respectively.

Thermal behavior of Flame Retardant Filled PLA-WF Bio-Composites

  • Choi, Seung-Woo;Lee, Byoung-Ho;Kim, Hyun-Joong;Kim, Hee-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.155-163
    • /
    • 2009
  • This study examined the thermal stability of PLA-WF bio-composites. Wood flour (WF)-filled PLA bio-composites were reinforced with the flame retardants, Melamine pyrophosphate (MPP), resorcinol bis (diphenyl phosphate) (RDP) and zinc borate (ZB). The flame retardant was compounded with PLA and natural biodegradable filler. The thermal properties of the biodegradable polymer and bio-composites reinforced with the flame retardant were measured and analyzed by DSC, DMA and TGA. The results showed that the flame retardant-reinforced biodegradable bio-composite exhibited improved thermal properties.

Bio-degradable 3D-scaffold fabrication using rapid-prototyping system (쾌속조형시스템을 이용한 생체 조직 재생용 지지체 제작과 특성분석)

  • Kim, Ji-Woong;Park, Ko-Eun;Lee, Jun-Hee;Park, Su-A;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1697-1699
    • /
    • 2008
  • The purpose of tissue engineering is to repair or replace damaged tissues or organs by a combination of cells, scaffold, suitable biochemical and physio-chemical factors. Among the three components, the biodegradable scaffold plays an important role in cell attachment and migration. In this study, we designed 3D porous scaffold by Rapid Prototyping (RP) system and fabricated layer-by-layer 3D structure using Polycarprolactone (PCL) - one of the most flexible biodegradable polymer. Furthermore, the physical and mechanical properties of the scaffolds were evaluated by changing the pore size and the strand diameter of the scaffold. We changed nozzle diameter (strand diameter) and strand to strand distance (pore size) to find the effect on the mechanical property of the scaffold. And the surface morphology, inner structure and storage modulus of PCL scaffold were analyzed with SEM, Micro-CT and DMA.

  • PDF

Properties of Biodegradable Films Produced from Rice Bran and Roasted Sesame Meal through Chemical Modifications

  • Bae, Dongho;Kim, Woo Jung;Jang, In Sook
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.79-85
    • /
    • 2000
  • Biodegradable films were prepared from roasted sesame meal and rice bran. Acetic anhydride, succinic anhydride, and formaldehyde were added to the film-forming solutions, and their effects on tensile strength, percent elongation, water vapor permeability, and water solubility of the films were studied. Roasted sesame meal did not form film without acylation or addition of formaldehyde. Acylated roasted sesame films had higher tensile strength and water-solubility, and lower % elongation than rice bran films. Acylation with acetic and succinic anhydrides increased tensile strength, percent elongation, and water solubility of rice bran films, but decreased water vapor permeability. Treatment with formaldehyde increased tensile strength of roasted sesame and rice bran films and % elongation of rice bran films, while reducing water-solubility of roasted sesame and rice bran films and water vapor permeability of rice bran films.

  • PDF

Fabrication of Biodegradable Polyphosphazene Microparticles by Electrohydrodynamic Atomization (전기분무에 의한 생분해성 폴리포스파젠 마이크로입자의 제조)

  • Xue, Li-Wei;Cai, Qing;Ryu, Seung-Kon;Jin, Ri-Guang
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.424-430
    • /
    • 2011
  • Biodegradable poly[(glycine ethyl ester)-(phenylalanine ethyl ester) phosphazene](PGPP) microparticles were fabricated by electrohydrodynamic atomization to apply drug release test. Atomization parameters such as applied voltage, polymer concentration, and molecular weight were investigated to inspect their effects on the size and morphology of microparticles. The average diameter of PGPP microparticles decreased as increasing applied voltage and solution flow rate. Dichloromethane/dioxane mixture shows better results for the preparation of microparticles than single solvent owing to the different PGPP solubility in solvent. Blending PGPP polymers with proper molecular weights not only favored the production of spherical PGPP microparticles via electrohydrodynamic atomization, but also provided a way to adjust drug (rifampicin) release behavior. Drug-loaded biodegradable polyphosphazene microspheres can be fabricated via electrohydrodynamic atomization, which has potential use in biomedical applications.