Browse > Article

Fabrication of Biodegradable Polyphosphazene Microparticles by Electrohydrodynamic Atomization  

Xue, Li-Wei (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology)
Cai, Qing (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology)
Ryu, Seung-Kon (Department of Chemical Engineering, Chungnam National University)
Jin, Ri-Guang (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology)
Publication Information
Polymer(Korea) / v.35, no.5, 2011 , pp. 424-430 More about this Journal
Abstract
Biodegradable poly[(glycine ethyl ester)-(phenylalanine ethyl ester) phosphazene](PGPP) microparticles were fabricated by electrohydrodynamic atomization to apply drug release test. Atomization parameters such as applied voltage, polymer concentration, and molecular weight were investigated to inspect their effects on the size and morphology of microparticles. The average diameter of PGPP microparticles decreased as increasing applied voltage and solution flow rate. Dichloromethane/dioxane mixture shows better results for the preparation of microparticles than single solvent owing to the different PGPP solubility in solvent. Blending PGPP polymers with proper molecular weights not only favored the production of spherical PGPP microparticles via electrohydrodynamic atomization, but also provided a way to adjust drug (rifampicin) release behavior. Drug-loaded biodegradable polyphosphazene microspheres can be fabricated via electrohydrodynamic atomization, which has potential use in biomedical applications.
Keywords
polyphosphazene; electrohydrodynamic atomization; microparticle;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. C. Ijsebaert, K. B. Geerse, J. C. M. Marijnissen, J. J. Lammers, and P. Zanen, J. Appl. Physiol., 91, 2735 (2001).   DOI
2 I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Ganan-Calvo, Science, 295, 1695 (2002).   DOI
3 T. Zhang and Q. Cai, Polym. Mat. Sci. Eng., 22, 90 (2006).
4 Q. F. Qin, Y. Q. Dai, K. Yi, L. Zhang, S. K. Ryu, and R. G. Jin, Carbon Letters, 11, 176 (2010).   DOI
5 R. S. Cheng, Polym. Commun., 4, 159 (1960).
6 J. T. Yang, in Advances in Protein Chemistry, Academic Press, New York, Vol 14, p 323 (1961).
7 G. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999).   DOI   ScienceOn
8 B. Bugarski, Q. Li, M. F. A. Goosen, D. Poncelet, R. J. Neufeld, and G. Vunjak, AIChE J., 40, 1026 (1994).   DOI   ScienceOn
9 T. Ciach, Int. J. Pharm., 324, 51 (2006).   DOI   ScienceOn
10 K. B. Geerse and J. C. M. Marijnissen, Electrospray as Means to Produce Monodisperse Drug Particles, L. Grado′n and J. C. M. Marijnissen, Editors, Kluwer Academic Publishers, The Netherlands, pp 75-90 (2003).
11 I. Uematsu, H. Matsumoto, M. Kenji, M. Minagawa, A. Tanioka, Y. Yamagata, and K. Inoue, J. Colloid Interf. Sci., 269, 336 (2004).   DOI
12 S. N. Jayasinghe, M. J. Edirisighe, and D. Z. Zhang, Nanotechnology, 15, 1519 (2004).   DOI   ScienceOn
13 C. Berkland, D. W. Pack, and K. Kim, Biomaterials, 25, 5649 (2004).   DOI   ScienceOn
14 H. R. Allcock, Chemistry and Applications of Polyphosphazenes, Wiley- Interscience, Hoboken, NJ., 2003.
15 S. H. Hong, J. H. Moon, J. M. Lim, S. H. Kim, and S. M. Yang, Langmuir, 21, 10416 (2005).   DOI   ScienceOn
16 D. Luna, L. Timothy, and W. Chi-Hwa, J. Control. Release, 102, 395 (2005).   DOI   ScienceOn
17 X. Jingwei, J. C. M. Marijnissen, and W. Chi-Hwa, Biomaterials, 27, 3321 (2006).   DOI   ScienceOn
18 X. Jingwei, L. Liangkuang, P. Yiyong, H. Jinsong, and W. Chi-Hwa, J. Colloid Interf. Sci., 302, 103 (2006).   DOI   ScienceOn
19 Y. Jun, L. L. Kuang, X. W. Jing, H. J. Song, and W. Chi- Hwa, J. Aerosol Sci., 39, 987 (2008).   DOI   ScienceOn
20 S. Lakshmi, D. S. Katti, and C. T. Laurencin, Adv. Drug Deliver. Rev., 55, 467 (2003).   DOI   ScienceOn
21 C. T. Laurencin, H. J. Koh, T. X. Neenan, H. R. Allcock, and R. Langer, J. Biomed. Mater. Res., 21, 1231 (1987).   DOI   ScienceOn
22 D. Nishit, P. Balabhaskar, R. R. Angela, P. Kapil, S. Shivshankar, and M. Samir, J. Control. Release, 146, 196 (2010).   DOI   ScienceOn
23 H. R. Allcock, T. J. Fuller, D. P. Mack, and K. Matsumura, Macromolecules, 10, 824 (1977).   DOI
24 H. R. Allcock, W. J. Cook, and D. P. Mack, Inorg. Chem., 11, 2584 (1972).   DOI
25 W. K. Son and J. H. Youk, Polymer, 45, 2959 (2004).   DOI   ScienceOn
26 H. R. Allcock, S. R. Pucher, and A. G. Scepelianos, Biomaterials, 15, 563 (1994).   DOI   ScienceOn
27 F. M. Veronese, F. Marsilio, P. Caliceti, P. De Filippis, P. Giunchedi, and S. Lora, J. Control. Release, 52, 227 (1998).   DOI   ScienceOn
28 F. M. Veronese, F. Marsilio, S. Lora, P. Caliceti, P. Passi, and P. Orsolini, Biomaterials, 20, 91 (1999).   DOI   ScienceOn
29 H. R. Allcock, T. J. Fuller, D. P. Mack, K. Matsumura, and K. M. Smeltz, Macromolecules, 10, 824 (1977).   DOI
30 H. R. Allcock, S. R. Pucher, and A. G. Scopelianos, Macromolecules, 27, 1071 (1994).   DOI   ScienceOn
31 M. R. Kasaai and G. Charlet, Food Res. Int., 33, 63 (2000).   DOI   ScienceOn
32 H. Youliang, L. Yanyan, Y. Yizi, L. Dongmei, and Z. Guangtian, J. Aerosol Sci., 39, 525 (2008).   DOI   ScienceOn
33 I. W. Lenggoro, B. Xia, and K. Okuyama, Langmuir, 18, 4584 (2002).   DOI   ScienceOn
34 H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999).   DOI   ScienceOn
35 K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, Polymer, 44, 4029 (2003).   DOI   ScienceOn
36 M. G. McKee, G. L. Wilkes, R. H. Colby, and T. E. Long, Macromolecules, 37, 1760 (2004).   DOI   ScienceOn