• Title/Summary/Keyword: biodegradable

Search Result 1,255, Processing Time 0.035 seconds

Effects of Organic Peroxide Compatibilizer on the Physical Properties of the Biodegradable Plastic Film (과산화물 상용화제 첨가가 생분해 바이오 플라스틱 필름의 물성에 미치는 영향)

  • Han, Jung-Gu;Park, Seung Joon;Chung, Sung Taek;Li, Fanzhu;Kim, Pan-Chae;Kuk, YoungRye;Park, Hyung Woo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.159-167
    • /
    • 2021
  • The need for biodegradable plastic continues to increase, improvement of physical properties is necessary for actual use in the market. In this study, composite film was produced by adding peroxide additives to bioplastic according to concentration to investigate changes in the melt index, elongation, morphology, and TGA of the composite film. The addition of peroxide compatibilizer showed superior elongation of film and TGA compared to those of control. The added amount of compatibilizer affected the extrusion process, and it was revealed that adding an appropriate amount of peroxidizer is important. Analysis of the composite film's morphology revealed a heterogeneous dispersion sequence due to different rates of crystallization depending on the resin, and surface physical properties were best in the group added with 4% peroxide. The results above showed that the test group added with 4% peroxide compatibilizer was superior in the production of composite biodegradable film.

Enhancement of bioactivity and osseointegration in Ti-6Al-4V orthodontic mini-screws coated with calcium phosphate on the TiO2 nanotube layer

  • Byeon, Seon-Mi;Kim, Hye-Ji;Lee, Min-Ho;Bae, Tae-Sung
    • The korean journal of orthodontics
    • /
    • v.52 no.6
    • /
    • pp.412-419
    • /
    • 2022
  • Objective: This study evaluated the effect of cyclic pre-calcification treatment on the improvement of bioactivity and osseointegration of Ti-6Al-4V mini-screws. Methods: The experimental groups were: an untreated group (UT), an anodized and heat-treated group (AH), and an anodized treatment followed by cyclic pre-calcification treatment group (ASPH). A bioactive material with calcium phosphate was coated on the mini-screws, and its effects on bioactivity and osseointegration were evaluated in in vitro and in vivo tests of following implantation in the rat tibia. Results: As a result of immersing the ASPH group in simulated body fluid for 2 days, protrusions appearing in the initial stage of hydroxyapatite precipitation were observed. On the 3rd day, the protrusions became denser, other protrusions overlapped and grew on it, and the calcium and phosphorus concentrations increased. The removal torque values increased significantly in the following order: UT group (2.08 ± 0.67 N·cm), AH group (4.10 ± 0.72 N·cm), and ASPH group (6.58 ± 0.66 N·cm) with the ASPH group showing the highest value (p < 0.05). In the ASPH group, new bone was observed that was connected to the threads, and it was confirmed that a bony bridge connected to the adjacent bone was formed. Conclusions: In conclusion, it was found that the surface treatment method used in the ASPH group improved the bioactivity and osseointegration of Ti-6Al-4V orthodontic mini-screws.

PBAT Compound Films with Improved Hydrolysis Resistance and its Application (내가수분해성이 향상 된 PBAT의 컴파운드 필름 및 이의 응용)

  • Sim, Jae-Ho;Shim, Jae-Hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.553-559
    • /
    • 2022
  • The film mulching technology is useful for controlling soil temperature and moisture by covering the soil surface, and for suppressing weeds. In this study, in order to improve the hydrolysis resistance and mechanical properties of the biodegradable mulching film, PBAT(Poly butylene adipate-co-terephthalate) and PLA(Poly lactic acid) were modified using a twin-screw extruder and then the physical and biodegradable properties of the film were investigated. After landfill the mulching film in soil, the weight reduction of the film was confirmed by period, and plant growth was observed after mulching in the dry paddy field for rice farming. Mulching films with improved hydrolysis resistance showed excellent crop growth properties, and biodegradable mulching films can offer potential as a new alternative for environmentally friendly, efficient and sustainable agricultural practices.

Preparation of Emulsion from Biodegradable Polymer (I) - Preparation of PLA and PBS Emulsions - (생분해성 고분자를 이용한 발수 에멀션의 제조 (I) - PLA 및 PBS 에멀션의 제조 -)

  • Lee, Min-Hyung;Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.28-35
    • /
    • 2012
  • Water-in-oil emulsion (W/O) and oil-in-water emulsion (O/W) types biodegradable polymer emulsions prepared to PLA and PBS. The optimal mixing ratio of polymer : solvent : OA : TEA : water was found be 10 : 40 : 4 : 6 : 30(g) when preparing emulsions. Biodegradability was most retained after preparation of polymer emulsions. Particle size of PLA and PBS emulsions were 2-3 ${\mu}m$ and 3-4 ${\mu}m$, respectively. Molecular weight of PLA and PBS emulsions were 108,000 and 92,000, respectively. And molecular weight of PLA and PBS emulsions became slightly lower than those of pellets.

EMI shielding effectiveness and mechanical properties of MWCNTs-reinforced biodegradable epoxy matrix composites

  • Yim, Yoon-Ji;Chung, Dong Chul;Park, Soo-Jin
    • Carbon letters
    • /
    • v.22
    • /
    • pp.36-41
    • /
    • 2017
  • Biodegradable epoxy (B-epoxy) was prepared from diglycidyl ether of bisphenol A and epoxidized linseed oil. The mechanical properties of B-epoxy composites reinforced with multi-walled carbon nanotubes (MWCNTs/B-epoxy) were examined by employing dynamic mechanical analysis, critical stress intensity factor ($K_{IC}$) tests, and impact strength tests. The electromagnetic interference shielding effectiveness (EMI-SE) of the composites was evaluated using reflection and absorption methods. Mechanical properties of MWCNTs/B-epoxy were enhanced with an increase in the MWCNT content, whereas they deteriorated when the MWCNT content was >5 parts per hundred resin (phr). This can likely be attributed to the entanglement of MWCNTs with each other in the B-epoxy due to the presence of an excess amount of MWCNTs. The highest EMI-SE obtained was ~16 dB for the MWCNTs/B-epoxy composites with a MWCNT content of 13 phr at 1.4 GHz. The composites (13 phr) exhibited the minimum EMI-SE (90%) when used as shielding materials at 1.4 GHz. The EMI-SE of the MWCNTs/B-epoxy also increased with an increase in the MWCNT content, which is a key factor affecting the EMI-SE.

Properties and particles dispersion of biodegradable resin/clay nanocomposites

  • Okada, Kenji;Mitsunaga, Takashi;Nagase, Youichi
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2003
  • In this study, two types of biodegradable resins-based clay nanocomposites, in which organic montmorillonite clay was filled, were prepared by the direct melt blending method. In order to characterize the nanocomposite structure, wide-angle X-ray diffraction (WAXD) and TEM observation were performed. Characterization of the nanocomposites shows that intercalated and partially exfoliated structures were generated by the melt blending method. Mechanical and rheological properties of the nanocomposites were measured respectively. For the mechanical properties, there were improvements in tensile strength and Young's modulus of the nanocomposites due to the reinforcement of nanoparticles. The rheological behaviors of the nanocomposites were significantly affected by the degree of the dispersion of the organoclay. The storage modulus of the nanocomposites was measured and the degree of the dispersion of the organoclay was evaluated from the value of the terminal slope of the storage modulus. In addition, the quantity of the shear necessary for making the nanocomposite for melt intercalation method was estimated from the relationship between the value of the terminal slope of the storage modulus and the applied shear.

poly(D,L-lactide-co-glycolide) nanoparticles제조와 약물방출 거동 및 생분해도

  • Yu, Jeong-Jun;Jeong, Yeong-Il;O, Dong-Seok;Im, Gyun-Taek
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.550-553
    • /
    • 2000
  • The polymeric matrices made with poly(D,L-lactide-co-glycolide) were prepared using copolymer of poly(D,L-lactide) and poly(ethylene glycol) for application of drug delivery systems. Catalyst made use of stannous actoate. Particle size were differ greatly$(435.3{\pm}11.2{\sim}2284.1{\pm}188.5)$ that nanoparticle made use of according to solvent of various kinds. Polymer could a sharp distinction with copolymerized among LE-1, LE-2 and LE-3 of PLA and PEG of content that to examine $^1H-NMR$ of copolymer make refine and reprecipitation. Drug delivery effect at PLGA nanoparticle : PLA amount more then proved highly drug delivery amount that each LE-1, LE-2, LE-3, drug and solvent was 40mg, 20mg and 10mg. Drug delivery effect proved higher 20mg that change(10mg, 20mg, 40mg) at drug feeding amount with LE-2. The first a lot of drug proved delivery. LE-3 most lactide content proved much delivery since biodegradable on PLGA copolymer result from lactide. Also biodegradable rate was highest at LE-3 much of lactide content, because influence at biodegradable effect of lactide by inclusive of soft PEG.

  • PDF

Fabrication and Characterization of Flurbiprofen loaded Chitosan Beads for Periodontal Regeneration (치주조직 재생용 플루르비프로펜 함유 키토산 비드의 제조 및 용출특성)

  • Rhee, Su-Jin;Park, Yoon-Jeong;Lee, Seung-Jin;Chung, Chong-Pyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.1
    • /
    • pp.71-77
    • /
    • 1997
  • With the aim of improving periodontal regeneration efficacy, as a biodegradable local drug delivery device, drug releasing chitosan beads were prepared. Chitosan beads were prepared through the formation of intermolecular or intramolecular ionic interaction bewteen chitosan and sodium tripolyphosphate and were loaded with flurbiprofen. The mean diameter of the beads was $250\;{\mu}m$. Drug loading efficiency was improved by regulating the pH of tripolyphosphate solution. The drug release kinetics mainly depended upon the hydrophobic properties of the flurbiprofen, that is, the release of flurbiprofen showed initial burst with rapid release for the first day followed by a levelling off of the release rate. However, the release rate could be controlled by the formulation factor including the pH, concentration of the tripolyphosphate solution, gelation time, drug contents. From these results, flurbiprofen loaded chitosan beads were anticipated as biodegradable local drug delivery devices for periodontal regeneneration.

  • PDF

Synthesis and Characterization of Biocompatible and Biodegradable Polyesters (II):Crystallization and Biodegradation of Poly (1,4-butanediol succinate) (생체적합성과 생분해성을 갖는 폴리에스테르 중합체의 합성과 특성에 관한 연구(II) : Poly(1, 4-butanediol succinate)의 결정화 및 생분해성)

  • 송대경;성정석
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 1995
  • Biodegradable poly (I ,4-butanediol succinate) (PBS) was synthesized from 1,4-butanediol and succinic anhydride. The glass transition temperature of poly (I, 4-butanediol succinate) was revealed at $73^{\circ}C$. The crystallization and cold crystallization of the polymers were investigated as a function of holding time in melt state, cooling rate. reheating, and molecular weight. Chain scission and/or cmsslinking did not occur in the melt state at var.ious holding times. Slower scanning rate can allow more times for nucleation, rearrangement, and packing of the polymer chain, so the onset temperature of crystallization from the melt was increased. PBS crystallized from the melt was found to have spherulitic structure. The degradation behavior of PBS was studied under basic conditions and with microorganisms using the modified ASTM method. In the basic solution. PBS lost up to 85% of its mass within two days. Based upon visual observation, the crystalline structure of films composed of larger molecular weight polymers retained their crystallinity longer than similar structures in low molecular weight samples.

  • PDF

Albumin Release from Biodegradable Hydrogels Composed of Dextran and Poly(Ethylene Glycol) Macromer

  • Kim, In-Sook;Jeong, Young-Il;Kim, Do-Hoon;Lee, Yun-Ho;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.24 no.1
    • /
    • pp.69-73
    • /
    • 2001
  • Biodegradable hydrogels based on glycidyl methacrylate dextran (CMD) and dimethacrylate poly(ethylene glycol) (DMP) were proposed for colon-specific drug delivery. GMD was synthesized by coupling of glycidyl methacylate with dextran in the presence of 4-(N, N-dimethylamino)pyridine (DMAP) using dimethylsulfoxide as a solvent. Methacrylate-terminated poly (ethylene glycol) (PEG) macromer was prepared by the reaction of PEG with methacryloyl chloride. CMD/DMP hydrogels were prepared by radical polymerization of phosphate buffer solution (0.1 M, pH 7.4) of GMD and DMP using ammonium peroxydisulfate (APS) and UV as initiating system. The synthetic GMD, DMP and GMD/DMP hydrogels were characterized by fourier transform infrared (FT-lR) spectroscopy. The FITC-albumin loaded hydrogels were prepared by adding FITC-albumin solution before UV irradiation. Swelling capacity of GMD/DMP hydrogels was controlled not only by molecular weight of dextran, but also by incorporation ratio of DMP Degradation of the hydrogels has been studied in vitro with dextranase. FITC-albumin release from the GMD/DMP hydrogels was affected by molecular weight of nextran and the presence of dextranase in the release medium.

  • PDF