DOI QR코드

DOI QR Code

PBAT Compound Films with Improved Hydrolysis Resistance and its Application

내가수분해성이 향상 된 PBAT의 컴파운드 필름 및 이의 응용

  • Received : 2022.07.25
  • Accepted : 2022.09.03
  • Published : 2022.09.30

Abstract

The film mulching technology is useful for controlling soil temperature and moisture by covering the soil surface, and for suppressing weeds. In this study, in order to improve the hydrolysis resistance and mechanical properties of the biodegradable mulching film, PBAT(Poly butylene adipate-co-terephthalate) and PLA(Poly lactic acid) were modified using a twin-screw extruder and then the physical and biodegradable properties of the film were investigated. After landfill the mulching film in soil, the weight reduction of the film was confirmed by period, and plant growth was observed after mulching in the dry paddy field for rice farming. Mulching films with improved hydrolysis resistance showed excellent crop growth properties, and biodegradable mulching films can offer potential as a new alternative for environmentally friendly, efficient and sustainable agricultural practices.

필름의 멀칭 기술은 토양 표면을 덮어 토양 온도와 수분을 조절하고, 잡초를 억제하는 기능에 사용된다. 본 연구에서는 생분해성 멀칭필름의 내가수분해성 및 기계적 물성을 향상시키기 위하여 PBAT(Poly Butylene Adipate-co-Terephthalate)와 PLA(Poly Lactic Acid)를 이축 압출기를 사용하여 개질한 후, 필름의 물성과 생분해 특성을 조사하였다. 멀칭필름을 토양에 매립 후 기간별 필름의 중량감소를 확인하였고, 건답에서 벼농사용 멀칭 후 식물의 성장을 관찰하였다. 내가수분해성이 향상된 멀칭 필름은 작물의 성장에 우수한 특성을 나타냈으며, 생분해되는 멀칭 필름은 환경 친화적이고 효율적이며, 지속가능한 농업관행을 위한 새로운 대안으로써의 가능성을 제공 할 수 있다.

Keywords

Acknowledgement

이 연구는 2022년도 한라대학교 교내연구비 지원에 의하여 연구되었음.

References

  1. L.C Arruda, M. Magaton, R. Bretas, M.M Ueki, "Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends, Polymer. Testing, Vol. 43. pp. 27-37, 2015. https://doi.org/10.1016/j.polymertesting.2015.02.005
  2. L. Jiang, M.P. Wolcott, J. Zhang, "Study of biodegradable Polylactide/Poly (butyleneadipateco-teraphthalate) Blends", Biomacromolecules, Vol. 7(1), pp. 199-207, 2006. https://doi.org/10.1021/bm050581q
  3. J.H. Sim, S.J. Kim, J.H. Shim, "The Effic of nucleating agent for improving heat resistance properties of L-lactide polymer", J . of the Korean-Industrial cooperation Society, Vol. 13 (11), pp. 5595-5600, 2012. https://doi.org/10.5762/KAIS.2012.13.11.5595
  4. D. Briassoulis, A. Giannoulis, "Evaluation of the functionality of bio-based plastic mulching films", Polymer Testing, Vol. 67, pp. 99-109, 2018. https://doi.org/10.1016/j.polymertesting.2018.02.019
  5. K.S. Kang and B.Y. Shin, "Modification of PLA Irradiation of Beam in the Presence of Functional Monomer : Rheological and Thermal Properties", Korean Chem. Eng. Res., Vol. 46(1), pp. 124-130, 2007. https://doi.org/10.1021/ie060857q
  6. M. Nikolic and J. Djonlagic, "Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)", Polymer Degradation & Stability, vol. 74, pp. 263-270, 2001. https://doi.org/10.1016/S0141-3910(01)00156-2
  7. W.M. Stevels, M.K, Ankone, P.J. Dijkstra, and J. Feijen, "Stereocomplex formation in ABA triblock copolymers of poly(lactide) (A) and poly(ethylene glycol) (B)", Macromol. Chem. Phys. Vol. 196(11), pp. 3687-3694, 1995. https://doi.org/10.1002/macp.1995.021961121
  8. B. Amita, G. Rahulk, B. Sati. N, H.J. Choi, "compatibility of biodegradable poly(lactic acid) (PLA) and poly(butylene succinate)(PBS) blend for packaging application", Korea-Australia rheology journal, Vol. 19(3), pp. 125-131, 2017.
  9. K.S. Kang, B.S. Kim, W.Y. Jang and B.Y. Shin, "Morphology, Thermal and Mechanical Properties of Poly(lactic acid)/Poly(butylene adipate-coterephthalate)/CMPS Blends", Polymer(Korea), Vol. 33(2), pp. 164-168, 2009.
  10. T.J. Kim, T.H. Kim, S.G. Kim and K.H. Seo, "Structural, thermal, and mechanical properties of PLA/PBAT/MEA blend", Polymer(Korea), Vol. 40(3), pp. 371-379, 2016. https://doi.org/10.7317/pk.2016.40.3.371
  11. Y.J. Du, P.J. Lemstra, A.J. Nijenhuis, HA.M. Aert and C. Bastiaansen, "ABA Type copolymers of lactide with Poly(ethylene glycol). kinetic, mechanistic, and model studies", Macromolecules, Vol. 28(7), pp. 2124-2132, 1993. https://doi.org/10.1021/ma00111a004
  12. Y-X Weng, Y-J Jin, Q-Y Meng, L. Wang, M. Zhang, Y-Z Wang, "Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions", Polymar Testing, Vol. 32(5), pp. 918-926, 2013. https://doi.org/10.1016/j.polymertesting.2013.05.001
  13. D. Kim, C.H. Min, H.Y. Park, et al., "Modification of PLA/PBAT blends and thermal/mechanical properties", Korean Soc. Ind. Eng. Chem. Vol. 24, pp. 104-111, 2013.
  14. H.S Park, K.Y Song J.R Kang et al., "Study on properties of eco-friendly pot with biodegradable PLA/PBAT blend film", J. of Envi. Sci. Int'l, Vol. 24(8), pp. 1037-1043, 2015. https://doi.org/10.5322/JESI.2015.24.8.1037
  15. A.M. Harris and E.C. Lee, "Improving mechanical performance of injection molded PLA by controlling crystallinity" J. of Appl. Polym. Sci., Vol. 107(4), pp. 2246-2255, 2008. https://doi.org/10.1002/app.27261
  16. J.H. KIM, M.S. Kim and B-W Kim, "Study on isothermal crystallization behavior and surface properties of non-oriented PLA film with annealing temperature". Korean chemical Eng. Res., Vol. 49(5), pp.611-616, 2011. https://doi.org/10.9713/kcer.2011.49.5.611
  17. C. Yuksekkalayci, U. Yilmazer and N. Orbei, "Effects of nucleating agent and processing conditions on the mechanical, thermal, and optical properties of biaxially oriented polypropylene films", Polym. Eng. and Sci, Vol. 39(7), 1216-1222 1999. https://doi.org/10.1002/pen.11508
  18. L. Yu, H. Liu, L. Chen, X. Li, "Effect of annealing and orientation on microstructures and mechanical properties of polylactic acid", Polym. Eng. and Sci, Vol. 48(4), 634-641, 2008. https://doi.org/10.1002/pen.20970
  19. Y.W. Kim and M.S. Kim, "Polyester film", Polym. Sci. Tech., Vol. 3(3), pp. 185-209, 1992.
  20. J.H Sim, "Improved hydrolysis resistance of biodegradable mulching films", The J. of Con. on Cult. Tech.(JCCT), Vol. 8(2), pp. 349-354, 2022.