Browse > Article
http://dx.doi.org/10.5714/CL.2017.22.036

EMI shielding effectiveness and mechanical properties of MWCNTs-reinforced biodegradable epoxy matrix composites  

Yim, Yoon-Ji (Department of Chemistry, Inha University)
Chung, Dong Chul (R&D Division, Korea Institute of Carbon Convergence Technology)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Carbon letters / v.22, no., 2017 , pp. 36-41 More about this Journal
Abstract
Biodegradable epoxy (B-epoxy) was prepared from diglycidyl ether of bisphenol A and epoxidized linseed oil. The mechanical properties of B-epoxy composites reinforced with multi-walled carbon nanotubes (MWCNTs/B-epoxy) were examined by employing dynamic mechanical analysis, critical stress intensity factor ($K_{IC}$) tests, and impact strength tests. The electromagnetic interference shielding effectiveness (EMI-SE) of the composites was evaluated using reflection and absorption methods. Mechanical properties of MWCNTs/B-epoxy were enhanced with an increase in the MWCNT content, whereas they deteriorated when the MWCNT content was >5 parts per hundred resin (phr). This can likely be attributed to the entanglement of MWCNTs with each other in the B-epoxy due to the presence of an excess amount of MWCNTs. The highest EMI-SE obtained was ~16 dB for the MWCNTs/B-epoxy composites with a MWCNT content of 13 phr at 1.4 GHz. The composites (13 phr) exhibited the minimum EMI-SE (90%) when used as shielding materials at 1.4 GHz. The EMI-SE of the MWCNTs/B-epoxy also increased with an increase in the MWCNT content, which is a key factor affecting the EMI-SE.
Keywords
Multi-walled carbon nanotubes; Biodegradable epoxy; EMI shielding effectiveness; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kuester S, Barra GMO, Rerreira JG, Jr, Soares BG, Dmarquette NR. Electromagnetic interference shielding and electrical properties of nanocomposites based on poly (styrene-b-ethylene-ranbutylene-b-styrene) and carbon nanotubes. Eur Polym J, 77, 43 (2016). https://doi.org/10.1016/j.eurpolymj.2016.02.020   DOI
2 Arjmand M, Chizari K, Krause B, Potschke P, Sundararaj U. Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites. Carbon, 98, 358 (2016). https://doi.org/10.1016/j.carbon.2015.11.024.   DOI
3 Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon, 39, 279 (2001). https://doi.org/10.1016/S0008-6223(00)00184-6.   DOI
4 Geetha S, Satheesh Kumar KK, Rao CRK, Vijayan M, Trivedi DC. EMI shielding: methods and materials: a review. J Appl Polym Sci., 112, 2073 (2009). https://doi.org/10.1002/app.29812.   DOI
5 Chen YJ, Li Y, Chu BTT, Kuo IT, Yip M, Tai N. Porous composites coated with hybrid nano carbon materials perform excellent electromagnetic interference shielding. Compos Part B Eng, 70, 231 (2015). https://doi.org/10.1016/j.compositesb.2014.11.006.   DOI
6 Kwon S, Ma R, Kim U, Choi HR. Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon, 68, 118 (2014). https://doi.org/10.1016/j.carbon.2013.10.070.   DOI
7 Kumar P, Shahzad F, Yu S, Hong SM, Kim YH, Koo CM. Largearea reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon, 94, 494 (2015). https://doi.org/10.1016/j.carbon.2015.07.032.   DOI
8 Yim YJ, Rhee KY, Park SJ. Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites. Compos Part B Eng, 98, 120 (2016). https://doi.org/10.1016/j.compositesb.2016.04.061.   DOI
9 Yuping D, Shunhua L, Hongtao G. Investigation of electrical conductivity and electromagnetic shielding effectiveness of polyaniline composite. Sci Technol Adv Mater, 6, 513 (2005). https://doi.org/10.1016/j.stam.2005.01.002.   DOI
10 Yim YJ, Park SJ. Electromagnetic interference shielding effectiveness of high-density polyethylene composites reinforced with multi-walled carbon nanotubes. J Ind Eng Chem, 21, 155 (2015). https://doi.org/10.1016/j.jiec.2014.04.001.   DOI
11 Dhawan R, Kumari S, Kumar R, Dhawan SK, Dhakate SR. Mesocarbon microsphere composites with $Fe_3O_4$ nanoparticles for outstanding electromagnetic interference shielding effectiveness. RSC Adv, 5, 43279 (2015). https://doi.org/10.1039/C5RA03332B.   DOI
12 Yim YJ, Seo MK, Kim HY, Park SJ. Electromagnetic interference shielding effectiveness and mechanical properties of MWCNT-reinforced polypropylene nanocomposites. Polymer(Korea), 36, 494 (2012). https://doi.org/10.7317/pk.2012.36.4.494.
13 Yan DX, Pang H, Li B, Vajtai R, Xu L, Ren PG, Wang JH, Li ZM. Structured reduced graphene oxide/polymer composites for ultraefficient electromagnetic interference shielding. Adv Funct Mater, 25, 559 (2015). https://doi.org/10.1002/adfm.201403809.   DOI
14 Thomassin JM, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R Rep, 74, 211 (2013). https://doi.org/10.1016/j.mser.2013.06.001.   DOI
15 Mahmoodi M, Arjmand M, Sundararaj U, Park S. The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites. Carbon, 50, 1455 (2012). https://doi.org/10.1016/j.carbon.2011.11.004.   DOI
16 Kim HG, Shin HJ, Kim GC, Park HJ, Moon HJ, Kwac LK. Electromagnetic interference shielding characteristics for orientation angle and number of plies of carbon fiber reinforced plastic. Carbon Lett, 15, 268 (2014). https://doi.org/10.5714/CL.2014.15.4.268.   DOI
17 Li N, Huang Y, Du F, He X, Lin X, Gao D, Ma Y, Li F, Chen Y, Eklund PC. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett, 6, 1141 (2006). https://doi.org/10.1021/nl0602589.   DOI
18 Thomassin JM, Vuluga D, Alexandre M, Jerome C, Molenberg I, Huynen I, Detrembleur C. A convenient route for the dispersion of carbon nanotubes in polymers: application to the preparation of electromagnetic interference (EMI) absorbers. Polymer, 53, 169 (2012). https://doi.org/10.1016/j.polymer.2011.11.026.   DOI
19 Kadam A, Pawar M, Yemul O, Thamke V, Kodam K. Biodegradable biobased epoxy resin from karanja oil. Polymer, 72, 82 (2015). https://doi.org/10.1016/j.polymer.2015.07.002.   DOI
20 Lee YS, Yoon KH. Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites. Carbon Lett, 16, 86 (2015). https://doi.org/10.5714/CL.2015.16.2.086.   DOI
21 Audic JL, Lemiègre L, Corre YM. Thermal and mechanical properties of a polyhydroxyalkanoate plasticized with biobased epoxidized broccoli oil. J Appl Polym Sci, 131, 39983 (2014). https://doi.org/10.1002/app.39983.
22 Chow WS, Tan SG, Ahmad Z, Chia KH, Lau NS, Sudesh K. Biodegradability of epoxidized soybean oil based thermosets in compost soil environment. J Polym Environ, 22, 140 (2014). https://doi.org/10.1007/s10924-013-0615-x.   DOI
23 Seo MK, Park SJ. A kinetic study on the thermal degradation of multi-walled carbon nanotubes-reinforced poly(propylene) composites. Macromol Mater Eng, 289, 368 (2004). https://doi.org/10.1002/mame.200300303.   DOI
24 Lee SO, Choi SH, Kwon SH, Rhee KY, Park SJ. Modification of surface functionality of multi-walled carbon nanotubes on fracture toughness of basalt fiber-reinforced composites. Compos Part B Eng, 79, 47 (2015). https://doi.org/10.1016/j.compositesb.2015.03.077.   DOI
25 Tan SG, Ahmad Z, Chow WS. Interpenetrating polymer network structured thermosets prepared from epoxidized soybean oil/diglycidyl ether of bisphenol A. Polym Int, 63, 273 (2014). https://doi.org/10.1002/pi.4501.   DOI
26 Park SJ, Jin FL, Lee JR. Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol Chem Phys, 205, 2048 (2004). https://doi.org/10.1002/macp.200400214.   DOI
27 Park SJ, Jin FL, Lee JR. Synthesis and thermal properties of epoxidized vegetable oil. Macromol Rapid Commun, 25, 724 (2004). https://doi.org/10.1002/marc.200300191.   DOI
28 Griffith AA. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A, 221, 163 (1921).   DOI
29 Ritzenthaler S, Court F, Girard-Reydet E, Leibler L, Pascualt JP. ABC triblock copolymers/epoxy-diamine blends: 2. parameters controlling the morphologies and properties. Macromolecules, 36, 118 (2003). https://doi.org/10.1021/ma0211075.   DOI
30 Ma PC, Kim JK, Tang BZ. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol, 67, 2965 (2007). https://doi.org/10.1016/j.compscitech.2007.05.006.   DOI
31 Yim YJ, Rhee KY, Park SJ. Influence of electroless nickel-plating on fracture toughness of pitch-based carbon fibre reinforced composites. Compos Part B Eng, 76, 286 (2015). https://doi.org/10.1016/j.compositesb.2015.01.052.   DOI
32 Park SJ, Jeong HJ, Nah C. A study of oxyfluorination of multiwalled carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites. Mater Sci Eng A, 385, 13 (2004). https://doi.org/10.1016/j.msea.2004.03.041.   DOI
33 Huang CY, Pai JF. Optimum conditions of electroless nickel plating on carbon fibres for EMI shielding effectiveness of ENCF/ABS composites. Eur Polym J, 34, 261 (1998). https://doi.org/10.1016/S0014-3057(96)00248-0.   DOI
34 Shim HB, Seo MK, Park SJ. Electromagnetic interference shielding of carbon fibers-reinforced composites. Polymer(Korea), 24, 860 (2000).
35 Seo MK, Lee JR, Park SJ. Crystallization kinetics and interfacial behaviors of polypropylene composites reinforced with multiwalled carbon nanotubes. Mater Sci Eng A, 404, 79 (2005). https://doi.org/10.1016/j.msea.2005.05.065.   DOI
36 Chauhan SS, Abraham M, Choudhary V. Electromagnetic shielding and mechanical properties of thermally stable poly(ether ketone)/multi-walled carbon nanotube composites prepared using a twinscrew extruder equipped with novel fractional mixing elements. RSC Adv, 6, 113781 (2016). https://doi.org/10.1039/c6ra22969g   DOI