• Title/Summary/Keyword: biodegradable

Search Result 1,255, Processing Time 0.04 seconds

Respirometry for COD Fractionation of Wastewater (미생물 호흡률 분석에 의한 하수의 유기물 분류)

  • Choi, Younggyun;Kim, Gyudong;Kim, Heejun;Kim, Yunjung;Chung, Taihak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.503-509
    • /
    • 2003
  • COD fractionation of primary settled municipal wastewater was conducted by respirometry. RBCOD (Readily Biodegradable COD) fraction was analyzed to be 21% of influent TCOD. However, SCOD fraction, analyzed by physical separation using $0.45{\mu}m$ membrane filter, was about 31% of TCOD. Therefore, 10% of soluble inert COD was comprised in TCOD. It means that kinetic analysis of activated sludge system was impossible because serious error would be occurred if SCOD was used as a biodegradable soluble component instead of RBCOD estimated from respirometry. In this study, RBCOD fraction of raw wastewater could be analyzed by respirometry within the error range of 57%. In addition, SBCOD (Slowly Biodegradable COD) content could be determined by kinetic simulation of the experimental results. SBCOD showed about 2-fold higher fraction (38% of TCOD) as compared with RBCOD.

Performance of environment friendly insulating dielectric oil for power transformer (친환경 변압기 절연유의 특성)

  • Han, Dong-Hee;Cho, Han-Goo;Han, Se-Won;Ahn, Myung-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.453-456
    • /
    • 2004
  • This paper surveys the latest findings on vegetable-oil-based dielectric coolants in power systems. In recent years, environmental concerns have been increased on the use of poorly biodegradable mineral oils in distribution and power transformers in regions where spills from leaks and equipment failure could contaminate the surroundings. In addition, there are demands to improve equipment efficiencies in power systems. In this reason, researches were started in the mid 1990s to develop a fully biodegradable dielectric coolants. Vegetable oil was considered the most likely candidate for a fully biodegradable dielectric coolants. Vegetable-oil-based dielectric coolants provide the advantages of high level of biodegradability, renewable natural resource, non-toxic properties, enhanced fire safety, more effective cooling and good dielectric strength for many electrical equipment.

  • PDF

Miscibility and Thermal Behavior of Biodegradable Synthetic Aliphatic Polyester (Bionolle) and Poly(epichlorohydrin) Blends (생분해성 지방족 폴리에스테르(Bionolle)와 폴리에피클로로하이드린 블렌드의 상용성 및 열적 거동에 관한 연구)

  • 김진호;최형진;이동주;윤진산;진인주
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.358-365
    • /
    • 2000
  • Miscibility itnd thermal behavior of blends of synthetic biodegradable aliphatic polyester (Bionolle) with poly(epichlorohydrin) (PECH) were investigated by a differential scanning calorimetry (DSC), a dynamic mechanical thermal analyzer (DMTA) and a rotational rheometer. Observed both single glass transition temperatures from the DSC in agreement with the Fox equation and single T$_{g}$ changes as a function of composition from the DMTA indicate that these blend mixtures are miscible. In addition, the miscibility of this blend system was also observed from the single curve of the Cole-Cole Plot of log G′($\omega$) vs. log C"($\omega$) from the dynamic test using a rotational rheometer. This was further verified from the cryogenically fractured surface of BDP/PECH blends by scanning electron microscopy.

  • PDF

A study on the evaluation of artificial cartilage using synthetic biodegradable polymers

  • Oh, Ho-Jung;Lee, Nam-Kyung;Kim, Soon-Nam;Hong, Choong-Man;Lee, Ki-Hong;Yoo, Si-Hyung;Shin, In-Soo;Lim, Jae-Hyun;Choi, Seung-Eun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.100.1-100.1
    • /
    • 2003
  • Tissue engineering has arisen to address the extreme shortage of tissues and organs for transplantation and repair. One of the most successful techniques has been the seeding and culturing cells on three-dimensional biodegradable scaffolds in vitro followed by implantaion in vivo. We used PLA and PLGA as biodegradable polymers and rabbit chondrocytes were isolated and applied to PLA and PLGA to make artificial cartilage. To evaluate the biocompatibility and biological safety of polymers, in vitro cytotoxicity and in vivo animal tests were investigated. (omitted)

  • PDF

Changes of Chemical Compounds in Compost of Municipal Refuse;3. Changes of C/N Ratios in Compost (폐기물의 퇴비화 과정중 물질 변화;3. C/N 율 변화)

  • Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.1
    • /
    • pp.55-59
    • /
    • 1989
  • To determine the accurate C/N ratio of compost, biodegradable carbon and nitrogen in compost must be analyzed. In biodegradable nitrogen analyzed by Kjeldahl Method, nitrate and nitrite which are available for microbes can not be detected at all. By means of $F{\"{o}}rster$ Method, nitrate and nitrite can be detected. Therefore, various nitrogens in compost were analyzed by Kjeldahl and $F{\"{o}}rster$ Method to investigate the seasonal changes of various C/N ratios of compost. C/N ratios in compost analyzed by Kjeldahl and $F{\"{o}}rster$ Method were decreased rapidly within 2 weeks after composting, then were not changed to 6 weeks, and thereafter were decreased slowly with the lapse of composting time. C/N ratios analyzed by Kjeldahl Method were higher than those analyzed by $F{\"{o}}rster$ Method. C/N ratios of total carbon/total nitrogen analyzed by Kjeldahl Method were higher(5 as C/N ratio or 36%) than those of biodegradable carbon/biodegradable nitrogen analyzed by $F{\"{o}}rster$ Method. Highly positive correlations were observed among C/N ratios of total carbon/total nitrogen analyzed by Kjeldahl Method total carbon/total nitrogen analyzed by $F{\"{o}}rster$ Method and biodegradable carbon/biodegradable nitrogen analyzed by $F{\"{o}}rster$ Method one another.

  • PDF

Outcomes after Arthroscopic Repair of Anterior Shoulder Instability after Metal Anchor to Biodegradable Anchor Fixation (견관절 전방 불안정성에 대한 관절경 치료 결과: 금속 나사못 및 흡수성 나사못 고정의 결과 비교)

  • Choi, Chang-Hyuk;Kim, Shin-Kun;Han, Bo-Ram
    • Clinics in Shoulder and Elbow
    • /
    • v.11 no.2
    • /
    • pp.158-164
    • /
    • 2008
  • Purpose: We compared the results of arthroscopic Bankart repair using metal and biodegradable anchor fixation. Materials & Methods: We reviewed 26 patients with anterior shoulder instability treated by arthroscopic Bankart repair from October, 2006, to March, 2007, 15 patients with metal anchors and 11 patients with biodegradable anchors. The average age was 27.4 years old (range: 17~55) and mean follow-up was 14 months (range: 12~17 months). Functional outcome was evaluated using the Korean Shoulder Score for Instability (KSSI), Rowe's Bankart Grading scale (RBGS), ASES score, and UCLA scores. Results: In the metal-anchor group, the improvements of mean KSSI, ASES, UCLA score, and RBGS were 20.6, 24.0, 4.0, and 45.5, respectively. In the biodegradable anchor group, improvements of mean KSSI, ASES, UCLA score, and RBGS were 21.0, 23.6, 4.6, and 48.9. The improvements in final outcomes were not significantly different (p>.05). One metal problem and one traumatic redislocation occurred in the metal group. Conclusion: Both techniques produced satisfactory outcomes in the treatment of traumatic anterior instability. The biodegradable anchor group could also avoid problems with metal anchors.

Manufacture of Biodegradable Polymer with Wastepaper(I) - Pretreatment and Analysis of Chemical Components On Wastepaper - (폐지를 이용한 생분해성 고분자의 제조(I) - 폐지의 화학적 조성 분석 및 전처리 -)

  • Kwon, Ki-Hun;Lim, Bu-Kug;Yang, Jae-Kyung;Chang, Jun-Pok;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.34-41
    • /
    • 2000
  • Recently many scientists have tried to synthesize biodegradable polymers due to durable and non-biodegradable products of conventional synthetic plastics when these were wasted in nature. So to reuse the wastepapers for biodegradable polymer resources, ONP (old newsprint), OCC (old corrugated containerbpard) were carried out by the pretreatment of chlorinite, hypochlorite and oxygen-alkali treatment conditions. For manufacturing of biodegradable polymer with wastepaper, this study performed to investigate change of chemical components and optimal pretreatment condition. The summarized results in this study were as follows: Lignin content in ONP and OCC was was higher than in MOW and ash content was the highest in MOW. More amount of ash components were reduced by wet defiberation than by dry defiberation. Wet defiberation fiber are better than dry defiberated fiber in chemical pretreatment condition for wastepapers, and the best result was obtained in the condition of sodium chlorite at $70^{\circ}C$, because it has high delignification ratio, ${\alpha}$-cellulose contents and degree of polymerization in this treatment condition. Oxygen-alkali treatment condition is the worst method because of low yield, low degree of polymerization in this pretreatments.

  • PDF

Fractionation of DOC and its Correlation to AOX(FP) in the Advanced ater Treatment Process (고도정수처리 공정에서 DOC 분획 특성 및 AOX(FP)와의 관계)

  • Lee, Byung-Cheun;Choi, Kyung-Hee;Choi, Ja-Yoon;Lee, Chul-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.909-918
    • /
    • 2009
  • As a part of dissolved organic matter, dissolved organic carbon (DOC) or biodegradable DOC (BDOC) fraction in particular is one of important issues in water treatment. Due to role as a nutrient source for bacteria, BDOC, therefore, may cause regrowth problems in water distribution system. The main objectives of this study were to investigate the possibility to minimize the concentration of BDOC in advance water treatment process. DOC in water is fractionized into four fractions such as AnBDOC (adsorbable and non-biodegradable DOC) which possesses adsorption properties but no biodegradation ability; nABDOC (biodegradable and non-adsorbable DOC) which has biodegradation properties but no adsorption ability; ABDOC (adsorbable and biodegradable DOC) which has adsorption properties and biodegradable characteristic; and non-removal DOC (nAnBDOC) which do not have either adsorbability or biodegradability. BAC process was effective for adsorbable DOC (AnBDOC+ABDOC) removal. However, in some cases, the removal ratio of adsorbable DOC was not sufficient. BDOC removal rate is very low or irremovable. Thus, for the control of residual DOC, it is necessary to change the operation condition by BAC process. From the analysis results of DOC fractions, water treatment processes appeared to be effective because it could grasp a remarkable amount of biodegradable, adsorbable and non-removal DOC. The concentration of AOX in non-prechlorination process was reduced from 7.1 ${\mu}g$/L to 0.51 ${\mu}g$/L in BAC process followed by ozonation.

In vitro wear behavior between enamel cusp and three aesthetic restorative materials: Zirconia, porcelain, and composite resin

  • Jang, Yong-Seok;Nguyen, Thuy-Duong Thi;Ko, Young-Han;Lee, Dae-Woo;Baik, Byeong Ju;Lee, Min-Ho;Bae, Tae-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • PURPOSE. The aim of this study was to identify the effects of three aesthetic restorative materials on the wear between tooth and restoration by a pin-on-disk manner. MATERIALS AND METHODS. Six aesthetic restorative materials were used to prepare disk specimens for wear test, which were Lava Zirconia as zirconia group, Vintage MP and Cerabien ZR as veneering porcelain group, Gradia Direct microhybrid composite containing prepolymerized fillers, Filtek Z250 microhybrid composite containing zirconia glass and colloidal silica particles, and Filtek Z350 nanocomposite as composite resin group. Vertical loss of the worn cusp, change of the surface roughness of the restoration materials, and the surface topography were investigated after wear test under 9.8-N contact load. RESULTS. The porcelain groups (Vintage MP and Cerabien ZR) caused the largest vertical loss of teeth when compared with those of the composite resin and zirconia groups, and Filtek Z250 microhybrid composite results in the second-largest vertical loss of teeth. The surface of Filtek Z350 nanocomposite was deeply worn out, but visible wear on the surface of the zirconia and Gradia Direct microhybrid composite was not observed. When the zirconia surface was roughened by sand-blasting, vertical loss of teeth considerably increased when compared with that in the case of fine polished zirconia. CONCLUSION. It was identified that microhybrid composite resin containing a prepolymerized filler and zirconia with reduced surface roughness by polishing were the most desirable restorative materials among the tested materials to prevent the two-body wear between aesthetic restorative material and tooth.

A Study on Increased Properties of Cellulose-Based Biodegradable Polymer Composites (셀룰로오스 기반 생분해성 고분자 복합재의 물성 증가에 관한 연구)

  • Sangjun Hong;Ajeong Lee;Sanghyeon Ju;Youngeun Shin;Teahoon Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • Growing environmental concerns regarding pollution caused by conventional plastics have increased interest in biodegradable polymers as alternative materials. The purpose of this study is to develop a 100% biodegradable nanocomposite material by introducing organic nucleating agents into the biodegradable and thermoplastic resin, poly(lactic acid), to improve its properties. Accordingly, cellulose nanofibers, an eco-friendly material, were adopted as a substitute for inorganic nucleating agents. To achieve a uniform dispersion of cellulose nanofibers (CNFs) within PLA, the aqueous solution of nanofibers was lyophilized to maintain their fibrous shape. Then, they were subjected to primary mixing using a twin-screw extruder. Test specimens with double mixing were then produced by injection molding. Differential scanning calorimetry was employed to confirm the reinforced physical properties, and it was found that the addition of 1 wt% CNFs acted as a reinforcing material and nucleating agent, reducing the cold crystallization temperature by approximately 14℃ and increasing the degree of crystallization. This study provides an environmentally friendly alternative for developing plastic materials with enhanced properties, which can contribute to a sustainable future without consuming inorganic nucleating agents. It serves as a basis for developing 100% biodegradable green nanocomposites.