• 제목/요약/키워드: biochemical research

검색결과 2,321건 처리시간 0.023초

$A_{23187}$과 2가 이온에 의해 일어나는 $K^{+}$ 이온과 $H^{-}$ 이온의 흐름에 미치는 Triterpenoidal Dammarane Serids의 Glycosides와 그 Aglycones의 영향 (The Action of Triterpenoidal Glycosides of Dammarane Series and Their Aglycones on $K^{+}$ and $H^{-}$ Fluxes in Erythrocytes, Induced by lonophore $A_{23187}$ and Divalent ions)

  • Kim, Yu.A.;Park, Kyeong-Mee;Kyung, Jong-Su;Hyun, Hak-Chul;Song, Yong-Bum;Shin, Han-Jae;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제20권2호
    • /
    • pp.168-172
    • /
    • 1996
  • Ginsenoside Rb,, at a concentration of 10 $\mu\textrm{g}$/ml and over, initiated the cycle of oscillation of ion flux in erythrocytes after the cells had been treated with a protonophore, carbonyl cyanide p-trifluoro-methoxyphenyl hydrazone (FCCP) and then with a $Ca^{2+}$ ionophore, A23,3,. Its action was similar to the additional portion of $Ca^{2+}$-ionophore or $Ca^{2+}$ ion to the erythrocytes. Effects of $Rg_1$ and Rf were different from that of Rb,. They did not induce the oscillation. They, however, increased the extracellular $K^{+}$ concentration and pH without returning to the initial state in the erythrocytes processed with FCCP and $A_{23187}$. We established that ginsenosides from 20-(5)-panaxatriol family induced the membrane hyperpolarization in erythrocytes, which was attenuated by the pretreatment of $Rb_1$, a major component of 20-(5)-panaxadiol.

  • PDF

Pathogenicity of Bacillus Strains to Cotton Seedlings and Their Effects on Some Biochemical Components of the Infected Seedlings

  • Aly, Aly A.;El-Mahdy, Omima M.;Habeb, Marian M.;Elhakem, Abeer;Asran, Amal A.;Youssef, Maryan M.;Mohamed, Heba I.;Hanafy, Rania S.
    • The Plant Pathology Journal
    • /
    • 제38권2호
    • /
    • pp.90-101
    • /
    • 2022
  • Pathogenicity of eight Bacillus strains to seedlings of four cotton cultivars was evaluated under greenhouse conditions. Each of the tested cultivars was individually treated with powdered inoculum of each bacterial strain. Untreated seeds were planted as control treatments in autoclaved soil. Effects of the tested strains on levels and activities of some biochemical components of the infected seedlings were also assayed. The biochemical components included total soluble sugars, total soluble proteins, total free amino acids, peroxidase, polyphenol oxidase, phenols, and lipid peroxidation. ANOVA showed that Bacillus strain (B) was a very highly significant source of variation in damping-off and dry weight. Cotton cultivar (V) was a nonsignificant source of variation in damping-off while it was a significant source of variation in dry weight. B × V interaction was a significant source of variation in damping-off and a nonsignificant source of variation in dry weight. Bacillus strain was the most important source of variation as it accounted for 59.36 and 64.99% of the explained (model) variation in damping-off and dry weight, respectively. The lack of significant correlation between levels and activities of the assayed biochemical components and incidence of damping-off clearly demonstrated that these biochemical components were not involved in the pathogenicity of the tested strains. Therefore, it was hypothesized that the pathogenicity of the tested strains could be due to the effect of cell wall degrading enzymes of pathogenic toxins. Based on the results of the present study, Bacillus strains should be considered in studying the etiology of cotton seedling damping-off.

Carbon and Energy Balances of Glucose Fermentation with Hydrogen-producing Bacterium Citrobacter amalonaticus Y19

  • Oh, You-Kwan;Park, Sung-Hoon;Seol, Eun-Hee;Kim, Seo-Hyoung;Kim, Mi-Sun;Hwang, Jae-Woong;Ryu, Dewey D.Y.
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.532-538
    • /
    • 2008
  • For the newly isolated $H_2$-producing chemoheterotrophic bacterium Citrobacter amalonaticus Y19, anaerobic glucose metabolism was studied in batch cultivation at varying initial glucose concentrations (3.5-9.5 g/l). The carbon-mass and energy balances were determined and utilized to analyze the carbon metabolic-pathways network. The analyses revealed (a) variable production of major metabolites ($H_2$, ethanol, acetate, lactate, $CO_2$, and cell mass) depending on initial glucose levels; (b) influence of NADH regeneration on the production of acetate, lactate, and ethanol; and (c) influence of the molar production of ATP on the production of biomass. The results reported in this paper suggest how the carbon metabolic pathway(s) should be designed for optimal Hz production, especially at high glucose concentrations, such as by blocking the carbon flux via lactate dehydrogenase from the pyruvate node.

Colloidal Silica를 이용한 Silylated Waterborne Polyurethane/Silica Nanocomposite의 제조 (Preparation of Silylated Waterborne Polyurethane/Silica Nanocomposites Using Colloidal Silica)

  • 홍민기;신용탁;최진주;이원기;이경배;유병원;이명구;송기창
    • Korean Chemical Engineering Research
    • /
    • 제48권5호
    • /
    • pp.561-567
    • /
    • 2010
  • Isophrone diisocyanate, poly(tetramethylene glycol)과 dimethylol propionic acid로부터 제조된, polyurethane 부분중합체의 미반응 NCO기를 aminopropyl triethoxysilane으로 capping시켜 silylated waterborne polyurethane을 합성하였다. 연이어 이것을 colloidal silica와 혼합하여 silylated waterborne polyurethane/silica nanocomposite를 제조하였다. 동적빛 산란법에 의해 측정된 nanocomposite 입자의 평균 크기는 silica 함유량과 무관하게 거의 일정한 수치를 나타내었다. 그러나 제조된 nanocomposite의 열적안정성은 순수한 waterborne polyurethane보다 우수하였다.

Manipulation of Hepatitis B Viral DNA for Generating Transgenic Mice

  • Kim, Seung-Hee;Park, Sang-Ho;Kim, Tae-Gyun;Lee, Song-Deuk;Aree Moon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.178-178
    • /
    • 1996
  • Hepatitis B virus (HBV) infection is one of the serious problems in Southeast Asia including Korea because it causes chronic hepatitis, which can easily be transformed In fatal conditions such as cirrhosis and hepatoma. Even though lots of informations on structural characteristics and gene expression mechanisms have been accumulated, the mechanism for HBV-induced hepatocellular injury which is believed to be the consequences of the immunological response is not well understood. In order tn perform immunopathological studies for prevention and treatment of HBV infection, we designed transgenic mice as a disease model which can mimic HBV infection, In this study, a promoter-HBV DNA fragment for the preparation of HBV transgenic mice has been constructed. To add a proper enzyme site on 5' end of HBV gene, total HBV (subtype adr) gene was inserted into BamHI site of pBluescript SK vector and reextracted by PstI-SacI treatment A liver-specific promoter, rat ${\alpha}$ 2u globulin gene promoter, was insrted to pBluescript SK vector and reextracted by BamHI-PstI treatment, Promoter-HBV DNA was constructed by ligation of two fragments using identical PstI sites. For large scale production of promoter-HBV DNA, it was inserted to BamHI-SacI site of pBluescript SK vector.

  • PDF

Optimization for Novel Glucanhydrolase Production of Lipomyces starkeyi KSM 22 by Statistical Design

  • PARK, JUN-SEONG;BYUNG-HOON KIM;JIN-HA LEE;EUN-SEONG SEO;KAB-SU CHO;HYUN-JUNG PARK;HEE-KYOUNG KANG;SUN-KYUN YOO;MYUNG-SUK HA
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.993-997
    • /
    • 2003
  • Response surface methodology was applied to find the optimum conditions for the production of DXAMase (containing both dextranase and amylase activities) based on the cultivation variables (pH, temperature, and agitation rate). The experimental values from the model equation conceded with predicted values in which the predicted values for dextranase and amylase activities were 2.26 and 3.52 U/ml at pH 4, $28^{\circ}C$, 235 rpm, and the corresponding experimental values were 2.41 and 3.68 U/ml, respectively.

Tetraethylorthosilicate를 사용한 수분산 폴리우레탄/실리카 Nanocomposite의 제조 (Preparation of Waterborne Polyurethane/Silica Nanocomposites Using Tetraethylorthosilicate)

  • 신용탁;홍민기;최진주;이원기;이경배;유병원;이명구;송기창
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.428-433
    • /
    • 2010
  • Isophorone diisocyanate(IPDI), poly(tetramethylene glycol)(PTMG), dimethylol propionic acid(DMPA), triethylamine(TEA), ethylenediamine(EDA), 3-aminopropyl triethoxysilane(APS)을 출발물질로 하여 수분산 폴리우레탄(Waterborne polyurethane, WPU)이 합성되었다. 이 WPU에 0~8 wt%로 첨가량이 조절된 tetraethylorthosilicate(TEOS)를 첨가한 후 Sol-Gel 반응을 진행시켜 WPU/silica nanocomposite를 제조하였다. WPU/silica nanocomposite의 평균 입경은 TEOS의 첨가량이 증가함에 따라 증가하였다. 또한 제조된 nanocomposite의 열적 안정성은 순수한 WPU보다 우수하였다.

Aminosilane Terminated 수분산 폴리우레탄 코팅 용액의 제조 및 특성 (Preparation and Properties of Aminosilane Terminated Waterborne Polyurethane)

  • 신용탁;홍민기;최진주;이원기;이경배;유병원;이명구;송기창
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.434-439
    • /
    • 2010
  • Isophorone diisocyanate(IPDI), poly(tetramethyleneglycol)(PTMG), dimethylol propionic acid(DMPA)를 출발물질로 하여 NCO terminated prepolymer가 합성되었다. 이 prepolymer의 NCO기를 silane으로 capping하기 위해 0~0.02 mole로 첨가량이 조절된 aminopropyl triethoxysilane(APS)이 첨가되었다. 제조된 용액의 평균 입경은 APS의 첨가량이 증가함에 따라 증가하였다. 또한 제조된 코팅 필름의 연필 경도 및 열적안정성은 순수한 수분산 폴리우레탄보다 우수하였다.

곤충생물공학의 현재와 전망 (Present and Perspective on Insect Biotechnology)

  • 최환석;김선암;신현재
    • KSBB Journal
    • /
    • 제30권6호
    • /
    • pp.257-267
    • /
    • 2015
  • Insects are the most successful organisms on earth in terms of their diversity and adaptability. Insect biotechnology using this insect resource is an emerging area for future biotechnology with various applications. Insect resources have long been used to make food and/or functional food, feed, cosmetics as well as medicine and industrial ingredients. Recently, one of the most well-known industrial material from insect is spider silk that could be commercialize in near future. The insect cell lines have been used to express recombinant proteins that were difficult to be functional expression. For public purpose, while, the insect could be good amenity source and plant farming, so leisure resource. Only the interdisciplinary research will guarantee the successful story for insect biotechnology. And biochemical engineers should used insect as a bioresource for new products with applications in medicine, agriculture, and industrial biotechnology in near future. This review will cover state-of-the art of this field and the research and application areas of insect biotechnology and the possible role of biochemical engineer for the development of the future biotechnology using this bioresource.