Browse > Article

Carbon and Energy Balances of Glucose Fermentation with Hydrogen-producing Bacterium Citrobacter amalonaticus Y19  

Oh, You-Kwan (Bioenergy Research Center, Korea Institute of Energy Research)
Park, Sung-Hoon (Department of Chemical and Biochemical Engineering and Institute for Environmental Technology and Industry, Pusan National University)
Seol, Eun-Hee (Department of Chemical and Biochemical Engineering and Institute for Environmental Technology and Industry, Pusan National University)
Kim, Seo-Hyoung (Department of Chemical and Biochemical Engineering and Institute for Environmental Technology and Industry, Pusan National University)
Kim, Mi-Sun (Bioenergy Research Center, Korea Institute of Energy Research)
Hwang, Jae-Woong (Oder Management Team, Environmental Management Corp.)
Ryu, Dewey D.Y. (Biochemical Engineering Program, Department of Chemical Engineering and Material Science, University of California)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.3, 2008 , pp. 532-538 More about this Journal
Abstract
For the newly isolated $H_2$-producing chemoheterotrophic bacterium Citrobacter amalonaticus Y19, anaerobic glucose metabolism was studied in batch cultivation at varying initial glucose concentrations (3.5-9.5 g/l). The carbon-mass and energy balances were determined and utilized to analyze the carbon metabolic-pathways network. The analyses revealed (a) variable production of major metabolites ($H_2$, ethanol, acetate, lactate, $CO_2$, and cell mass) depending on initial glucose levels; (b) influence of NADH regeneration on the production of acetate, lactate, and ethanol; and (c) influence of the molar production of ATP on the production of biomass. The results reported in this paper suggest how the carbon metabolic pathway(s) should be designed for optimal Hz production, especially at high glucose concentrations, such as by blocking the carbon flux via lactate dehydrogenase from the pyruvate node.
Keywords
Hydrogen production; carbon and energy balances; anaerobic glucose fermentation; Citrobacter amalonaticus; carbon-flux analysis;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Bisaillon, A., J. Turcot, and P. C. Hallenbeck. 2006. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int. J. Hydrogen Energy 31: 1504-1508   DOI   ScienceOn
2 Bock, A. and G. Sawers. 1996. Fermentation, pp. 262-282. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.). Escherichia coli and Salmonella. Cellular and Molecular Biology, 2nd Ed. ASM Press, Washington, DC
3 Kumar, N. and D. Das. 2000. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem. 35: 589-593   DOI
4 Lee, S. G., Y.-J. Kim, S. I. Han, Y.-K. Oh, S. Park, Y. H. Kim, and K. S. Hwang. 2006. Simulation of dynamic behavior of glucose- and tryptophan-grown Escherichia coli using constraintbased metabolic models with a hierarchical regulatory network. J. Microbiol. Biotechnol. 16: 993-998   과학기술학회마을
5 Nath, K. and D. Das. 2004. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 65: 520-529
6 Oh, Y.-K., H.-J. Kim, S. Park, M.-S. Kim, and D. D. Y. Ryu. 2006. Metabolic-flux analysis of hydrogen production pathway in Citrobacter amalonaticus Y19. Proceedings of The 2006 Asian Bio-Hydrogen Symposium. pp. 143-160, November 19. Taichung, Taiwan
7 Gustafsson, L., R. Olz, K. Larsson, C. Larsson, and L. Adler. 1993. Energy balance calculations as a tool to determine maintenance energy requirements under stress conditions. Pure Appl. Chem. 65: 1893-1898   DOI   ScienceOn
8 Kim, J. R., Y.-K. Oh, Y.-J. Yoon, E. Y. Lee, and S. Park. 2003. Oxygen sensitivity of carbon monoxide-dependent hydrogen production activity in Citrobacter sp. J. Microbiol. Biotechnol. 13: 717-724
9 Oh, Y.-K., M. S. Park, E.-H. Seol, S.-J. Lee, and S. Park. 2003. Isolation of hydrogen-producing bacteria from granular sludge of an upflow anaerobic sludge blanket reactor. Biotechnol. Bioprocess Eng. 8: 54-57   DOI
10 Oh, Y.-K., S. H. Kim, M.-S. Kim, and S. Park. 2004. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol. Bioeng. 88: 690-698   DOI   ScienceOn
11 Russel, J. B. and G. M. Cook. 1995. Energetics of bacterial growth: Balance of anaerobic and catabolic reactions. Microbiol. Rev. 59: 48-62
12 Oh, Y.-K., E.-H. Seol, E. Y. Lee, and S. Park. 2002. Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy 27: 1373-1379   DOI   ScienceOn
13 Converti, A. and P. Perego. 2002. Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Appl. Microbiol. Biotechnol. 59: 303-309   DOI
14 Gottschalk, G. 1986. Bacterial Metabolism, 2nd Ed. Springer-Verlag, New York
15 van Niel, E. W. J., M. A. W. Budde, G. G. de Haas, F. J. van der Wal, P. A. M. Claassen, and A. J. M. Stams. 2002. Distinctive properties of high hydrogen producing extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int. J. Hydrogen Energy 27: 1391-1398   DOI   ScienceOn
16 Kanehisa, M., S. Goto, S. Kawashima, and A. Nakaya. 2002. The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42-46   DOI   ScienceOn
17 Jung, G. Y., J. R. Kim, H. O. Jung, J.-Y. Park, and S. Park. 1999. A new chemoheterotrophic bacterium catalyzing water-gas shift reaction. Biotechnol. Lett. 21: 869-873   DOI   ScienceOn
18 Jung, G. Y., J. R. Kim, J.-Y. Park, and S. Park. 2002. Hydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int. J. Hydrogen Energy 27: 601-610   DOI   ScienceOn
19 Magee, R. J. and N. Kosaric. 1987. The microbial production of 2,3-butanediol. Adv. Appl. Microbiol. 32: 89-161   DOI
20 Taguchi, F., N. Mizukami, T. Saito-Taki, and K. Hasegawa. 1995. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain no. 2. Can. J. Microbiol. 41: 536-540   DOI   ScienceOn
21 Oh, M.-K., M.-J. Cha, S.-G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 16: 543-549   과학기술학회마을
22 Oh, Y.-K., E.-H. Seol, J. R. Kim, and S. Park. 2003. Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int. J. Hydrogen Energy 28: 1353-1359   DOI   ScienceOn
23 Tarmy, E. M. and N. O. Kaplan. 1968. Kinetics of Escherichia coli B D-lactate dehydrogenase and evidence for pyruvate controlled change in conformation. J. Biol. Chem. 243: 2587-2596
24 Islam, R., N. Cicek, R. Sparling, and D. Levin. 2006. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Appl. Microbiol. Biotechnol. 72: 576-583   DOI   ScienceOn
25 Kim, S., E. Seol, S. M. Raj, and S. Park. 2006. Various hydrogenases and formate-dependent hydrogen production in Citrobacter amalonaticus Y19. Proceedings of The 2006 Asian Bio-Hydrogen Symposium. pp. 37-47, November 19. Taichung, Taiwan
26 Crueger, W., A. Crueger, and A. G. Bayer. 1990. Biotechnology: A Textbook of Industrial Microbiology, 2nd Ed. Sinauer Associates, Inc., Sunderland
27 Baek, J.-S., E.-H. Choi, Y.-S. Yun, S.-C. Kim, and M.-S. Kim. 2006. Comparison of hydrogenases from Clostridium butyricum and Thiocapsa roseopersicina: Hydrogenases of C. butyricum and T. roseopersicina. J. Microbiol. Biotechnol. 16: 1210-1215   과학기술학회마을
28 Yokoi, H., T. Ohkawara, J. Hirose, S. Hayashi, and Y. Takasaki. 1995. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J. Ferment. Bioeng. 80: 571-574   DOI   ScienceOn