DOI QR코드

DOI QR Code

Pathogenicity of Bacillus Strains to Cotton Seedlings and Their Effects on Some Biochemical Components of the Infected Seedlings

  • Aly, Aly A. (Plant Pathology Research Institute, Agricultural Research Center) ;
  • El-Mahdy, Omima M. (Faculty of Education, Department of Biological and Geological Sciences, Ain Shams University) ;
  • Habeb, Marian M. (Plant Pathology Research Institute, Agricultural Research Center) ;
  • Elhakem, Abeer (Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University) ;
  • Asran, Amal A. (Plant Pathology Research Institute, Agricultural Research Center) ;
  • Youssef, Maryan M. (Faculty of Agriculture, Department of Plant Pathology, Cairo University) ;
  • Mohamed, Heba I. (Faculty of Education, Department of Biological and Geological Sciences, Ain Shams University) ;
  • Hanafy, Rania S. (Faculty of Education, Department of Biological and Geological Sciences, Ain Shams University)
  • Received : 2021.11.28
  • Accepted : 2022.01.26
  • Published : 2022.04.01

Abstract

Pathogenicity of eight Bacillus strains to seedlings of four cotton cultivars was evaluated under greenhouse conditions. Each of the tested cultivars was individually treated with powdered inoculum of each bacterial strain. Untreated seeds were planted as control treatments in autoclaved soil. Effects of the tested strains on levels and activities of some biochemical components of the infected seedlings were also assayed. The biochemical components included total soluble sugars, total soluble proteins, total free amino acids, peroxidase, polyphenol oxidase, phenols, and lipid peroxidation. ANOVA showed that Bacillus strain (B) was a very highly significant source of variation in damping-off and dry weight. Cotton cultivar (V) was a nonsignificant source of variation in damping-off while it was a significant source of variation in dry weight. B × V interaction was a significant source of variation in damping-off and a nonsignificant source of variation in dry weight. Bacillus strain was the most important source of variation as it accounted for 59.36 and 64.99% of the explained (model) variation in damping-off and dry weight, respectively. The lack of significant correlation between levels and activities of the assayed biochemical components and incidence of damping-off clearly demonstrated that these biochemical components were not involved in the pathogenicity of the tested strains. Therefore, it was hypothesized that the pathogenicity of the tested strains could be due to the effect of cell wall degrading enzymes of pathogenic toxins. Based on the results of the present study, Bacillus strains should be considered in studying the etiology of cotton seedling damping-off.

Keywords

References

  1. Abd El-Rahman, S. S., Mazen, M. M., Mohamed, H. I. and Mahmoud, N. M. 2012. Induction of defence related enzymes and phenolic compounds in lupin (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. Eur. J. Plant Pathol. 134:105-116. https://doi.org/10.1007/s10658-012-0028-z
  2. Abd El-Rahman, S. S. and Mohamed, H. I. 2014. Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physiol. Plant. 36:343-354. https://doi.org/10.1007/s11738-013-1416-5
  3. Abu-Shahba, M. S., Mansour, M. M., Mohamed, H. I. and Sofy, M. R. 2021. Comparative cultivation and biochemical analysis of iceberg lettuce grown in sand soil and hydroponics with or without microbubble and microbubble. J. Soil Sci. Plant Nutr. 21: 389-403. https://doi.org/10.1007/s42729-020-00368-x
  4. Agrios, G. N. 2005. Plant pathology. 5th ed. Elsevier Academic Press, Burlington, MA, USA. 952 pp.
  5. Aly, A. A., El-Samman, M. G. M., Omar, M. R. and El-Samawaty, A. M. A. 2008. Amino acid composition of cottonseed as related to horizontal and vertical resistance to Fusarium wilt disease. J. Agric. Sci. Mansoura Univ. 33:5749-5759.
  6. Aly, A. A., Mansour, M. T. M., Mohamed, H. I. and Abd-Elsalam, K. A. 2012a. Ascorbic acid of seeds and proteins of leaves as biochemical markers for resistance of flax to powdery mildew disease. Rom. Agric. Res. 29:63-69.
  7. Aly, A. A., Mansour, M. T. M., Mohamed, H. I. and Abd-Elsalam, K. A. 2012b. Examination of correlations between several biochemical components and powdery mildew resistance of flax cultivars. Plant Pathol. J. 28:149-155. https://doi.org/10.5423/PPJ.2012.28.2.149
  8. Aly, A. A., Mohamed, H. I., Mansour, M. T. M. and Omar, M. R. 2013. Suppression of powdery mildew on flax by foliar application of essential oils. J. Phytopathol. 161:376-381. https://doi.org/10.1111/jph.12080
  9. Ashry, N. A., Ghonaim, M. M., Mohamed, H. I. and Mogazy, A. M. 2018. Physiological and molecular genetic studies on two elicitors for improving the tolerance of six Egyptian soybean cultivars to cotton leaf worm. Plant Physiol. Biochem. 130:224-234. https://doi.org/10.1016/j.plaphy.2018.07.010
  10. Avtar, R., Rathi, A. S., Jatasra, D. S. and Joshi, U. N. 2003. Changes in phenolics and some oxidative enzymes in fenugreek leaves due to powdery mildew infection. Acta Phytopathol. Entomol. Hung. 38:237-244. https://doi.org/10.1556/APhyt.38.2003.3-4.3
  11. Bathily, H., Babana, A. H. and Samake, F. 2010. Bacillus pumilus, a new pathogen on potato tubers in storage in Mali. Afr. J. Microbiol. Res. 4:2067-2071.
  12. Bezrutczyk, M., Yang, J., Eom, J.-S., Prior, M., Sosso, D., Hartwig, T., Szurek, B., Oliva, R., Vera-Cruz, C., White, F. F., Yang, B. and Frommer, W. B. 2018. Sugar flux and signaling in plant-microbe interactions. Plant J. 93:675-685. https://doi.org/10.1111/tpj.13775
  13. Bhattacharya, A. and Shukla, P. 1996. Effect of Erysiphe polygoni D. C. infection on activities of some hydrolytic enzymes and their metabolites in Pisum sativum L. leaves. Legume Res. 19:133-137.
  14. Buonaurio, R. 2008. Infection and plant defense responses during plant bacterial interaction. In: Plant-microbe interactions, eds. by E. A. Barka and C. Clement, pp. 169-197. Research Signpost, Kerala, India.
  15. Caruso, F. L., Zuck, M. G. and Bessette, A. E. 1984. Bacterial seedling blight of tomato caused by Bacillus polymyxa. Plant Dis. 68:617-620. https://doi.org/10.1094/PD-69-617
  16. Chiu, W.-F., Di, Y.-P., Chow, Y.-Y. and Si, F.-J. 1964. Some bacteria causing decay of Chinese cabbage in storage. Acta Phytopathol. Sin. 7:127-134.
  17. Dallagnol, L. J., Rodrigues, F. A., DaMatta, F. M., Mielli, M. V. and Pereira, S. C. 2011. Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice- -Bipolaris oryzae interaction. Phytopathology 101:92-104. https://doi.org/10.1094/PHYTO-04-10-0105
  18. Dihazi, A., Jaiti, F., Zouine, J., Hassni, M. E. and Hadrami, I. E. 2003. Effect of salicylic acid on phenolic compounds related to date palm resistance to Fusarium oxysporum f. sp. albedinis. Phytopathol. Mediterr. 42:9-16.
  19. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. https://doi.org/10.1021/ac60111a017
  20. El-Beltagi, H. S., Mohamed, H. I., Elmelegy, A. A., Eldesoky, S. E. and Safwat, G. 2019. Phytochemical screening, antimicrobial, antiaxidant, anticancer activities and nutritional values of cactus (Opuntia ficus-indicia) pulp and peel. Fresenius Environ. Bull. 28:1534-1551.
  21. El-Hamalawi, Z. A. and Menge, J. A. 1995. Seasonal fluctuations in the extent of colonization of avocado plants by the stem canker pathogen Phytophthora citricola. J. Am. Soc. Hortic. Sci. 120:157-162. https://doi.org/10.21273/jashs.120.2.157
  22. Fira, D., Dimkic, I., Beric, T., Lozo, J. and Stankovic, S. 2018. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285:44-55. https://doi.org/10.1016/j.jbiotec.2018.07.044
  23. Fuchs, T. M. 1998. Molecular mechanisms of bacterial pathogenicity. Naturwissenschaften 85:99-108. https://doi.org/10.1007/s001140050463
  24. Gabr, M. R. and Gazar, A. A. 1983. Cabbage head rot due to spore-forming bacteria. Ann. Agric. Sci. 28:1163-1185.
  25. Gagne-Bourgue, F., Aliferis, K. A., Seguin, P., Rani, M., Samson, R. and Jabaji, S. 2013. Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J. Appl. Microbiol. 114: 836-853. https://doi.org/10.1111/jam.12088
  26. Galal, A. A., Abdel-Gawad, T. I. and El-Bana, A. A. 2002. Postharvest decay of garlic cloves caused by Bacillus polymyxa and Fusarium moniliforme. Egypt. J. Microbiol. 36:71-88.
  27. Galal, A. A., El-Bana, A. A. and Janse, J. 2006. Bacillus pumilus, a new pathogen on mango plants. Egypt. J. Phytopathol. 34:17-29.
  28. Gawande, V. L., Patil, J. V., Naik, R. M. and Kale, A. A. 2002. Plant biochemical defense against powdery mildew (Erysiphe polygoni DC) disease in mungbean (Vigna radiate (L.) Wilczek). J. Plant Biol. 29:337-341.
  29. Gebauer, P., Korn, M., Engelsdorf, T., Sonnewald, U., Koch, C. and Voll, L. M. 2017. Sugar accumulation in leaves of arabidopsis sweet11/sweet12 double mutants enhances priming of the salicylic acid-mediated defense response. Front. Plant Sci. 8:1378. https://doi.org/10.3389/fpls.2017.01378
  30. Gobel, C., Feussner, I. and Rosahl, S. 2003. Lipid peroxidation during the hypersensitive response in potato in the absence of 9-lipoxygenases. J. Biol. Chem. 278:52834-52840. https://doi.org/10.1074/jbc.M310833200
  31. Heath, R. L. and Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  32. Helmi, A. and Mohamed, H. I. 2016. Biochemical and ulturasturctural changes of some tomato cultivars to infestation with Aphis gossypii Glover (Hemiptera: Aphididae) at Qalyubiya, Egypt. Gesunde Pflanz. 68:41-50. https://doi.org/10.1007/s10343-016-0361-9
  33. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. and Williams, S. T. 1994. Bergey's manual of determinative bacteriology. 9th ed. Williams and Wilkins, Baltimore, MD, USA. 787 pp.
  34. Hosford, R. M. Jr. 1982. White blotch incited in wheat by Bacillus megaterium pv. cerealis. Phytopathology 72:1453-1459. https://doi.org/10.1094/Phyto-72-1453
  35. Hussain, T., Khan, A. A. and Mohamed H. I. 2022. Potential efficacy of biofilm-forming biosurfactant Bacillus firmus HussainT-Lab.66 against Rhizoctonia solani and mass spectrometry analysis of its metabolites. Int. J. Pept. Res. Ther. 28:3. https://doi.org/10.1007/s10989-021-10318-5
  36. Hwang, S.-K., Back, C.-G., Win, N. K. K., Kim, M. K., Kim, H.- D., Kang, I.-K., Lee, S.-C. and Jung, H.-Y. 2012. Occurrence of bacterial rot of onion caused by Bacillus amyloliquefaciens in Korea. J. Gen. Plant Pathol. 78:227-232. https://doi.org/10.1007/s10327-012-0376-8
  37. Joseph, L. M., Koon, T. T. and Man, W. S. 1998. Antifungal effects of hydrogen peroxide and peroxidase on spore germination and mycelial growth of Pseudocercospora species. Can. J. Bot. 76:2119-2124. https://doi.org/10.1139/b98-166
  38. Kar, M. and Mishra, D. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 57:315-319. https://doi.org/10.1104/pp.57.2.315
  39. Kovaleva, V. A., Shalovylo, Y. I., Gorovik, Y. N. Lagonenko, A. L., Evtushenkov, A. N. and Gout, R. T. 2015. Bacillus pumilus: a new phytopathogen of Scots pine - Short Communication. J. For. Sci. 61:131-137. https://doi.org/10.17221/16/2014-JFS
  40. Kumar, P., Khare, S. and Dubey, R. C. 2012. Diversity of bacilli from disease suppressive soil and their role in plant growth promotion and yield enhancement. N. Y. Sci. J. 5:90-111.
  41. Leary, J. V. and Chun, W. W. C. 1989. Pathogenicity of Bacillus circulans to seedlings of date palm (Phoenix dactylifear). Plant Dis. 73:353-354. https://doi.org/10.1094/PD-73-0353
  42. Leary, J. V., Nelson, N., Tisserat, B. and Allingham, E. A. 1986. Isolation of pathogenic Bacillus circulans from callus cultures and healthy offshoots of date palm (Phoenix dactylifera L.). App. Environ. Microbiol. 52:1173-1176. https://doi.org/10.1128/aem.52.5.1173-1176.1986
  43. Li, B., Qiu, W., Tan, Q. M., Su, T., Fang, Y. and Xie, G. L. 2009. Association of a Bacillus species with leaf and twig dieback of Asian pear (Pyrus pyrifolia) in China. J. Plant Pathol. 91:705-708.
  44. Lowry, C. O., Rosebrough, N., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  45. Mansour, M. T. M., Aly, A. A., Habeb, M. M. and Mohamed H. I. 2020. Control of cotton seedling damping-off by treating seed with inorganic salts. Gesunde Pflanz. 72:273-283. https://doi.org/10.1007/s10343-020-00510-w
  46. Melo, G. A., Shimizu, M. M. and Mazzafera, P. 2006. Polyphenoloxidase activity in coffee leaves and its role in resistance against the coffee leaf miner and coffee leaf rust. Phytochemistry 67:277-285. https://doi.org/10.1016/j.phytochem.2005.11.003
  47. Mohamed, H., Abd El-Hady, A., Mansour, M. and El-Samawaty, A. E. 2012. Association of oxidative stress components with resistance to flax powdery mildew. Trop. Plant Pathol. 37:386-392. https://doi.org/10.1590/S1982-56762012000600002
  48. Mohamed, H. I. and Abd-El Hameed, A. G. 2014. Molecular and biochemical markers of some Vicia faba L. genotype in response to storage insect pests infestation. J. Plant Interact. 9:618-626. https://doi.org/10.1080/17429145.2013.879678
  49. Mohamed, H. I. and Akladious, S. A. 2017. Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants Pestic. Biochem. Physiol. 142:117-122.
  50. Mohamed, H. I., Elsherbiny, E. A. and Abdelhamid, M. T. 2016. Physiological and biochemical responses of Vicia faba plants to foliar application with zinc and iron. Gesunde Pflanz. 68:201-212. https://doi.org/10.1007/s10343-016-0378-0
  51. Mohamed, H. I. and Gomaa, E. Z. 2012. Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 50:263-272. https://doi.org/10.1007/s11099-012-0032-8
  52. Moore, S. and Stein, W. H. 1954. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 211:907-913. https://doi.org/10.1016/S0021-9258(18)71178-2
  53. Naim, M. S. and Hussein, A. M. 1956. Effect of rhizospheric microflora on the growth of cotton plants. Ain Shams Sci. Bull. 1:77-96.
  54. Omokolo, N. D., Nankeu, D. J., Niemenak, N. and Djocgoue, P. F. 2002. Analysis of amino acids and carbohydrates in the cortex of nine clones of Theobroma cacao L. in relation to their susceptibility to Phytophthora megakarya Bra. and Grif. Crop Prot. 21:395-402. https://doi.org/10.1016/S0261-2194(01)00121-1
  55. Peng, Q., Yuan, Y. and Gao, M. 2013. Bacillus pumilus, a novel ginger rhizome rot pathogen in China. Plant Dis. 97:1308-1315. https://doi.org/10.1094/pdis-12-12-1178-re
  56. Rao, K. D., Jindal, P. C., Singh, R., Srivastava, G. C. and Sharma, R. C. 2007. Biochemical and genetical studies in grape germplasm for powdery mildew (Uncinula necator) disease resistance. Agric. Sci. Digest 27:235-238.
  57. Rempe, E. H. and Sorokina, M. T. A. 1950. Concerning the penetration of bacteria into the cells of the root. Agrobiology 6:135-138.
  58. Saleh, O. I. 1995. Identification of phytopathogenic bacteria associated with post harvest disease of garlic cloves in relation to cell wall degrading enzymes. Egypt. J. Microbiol. 30:177-202.
  59. Saleh, O. I., Huang, P.-Y. and Huang, J.-S. 1997. Bacillus pumilus, the cause of bacterial blotch of immature peach. J. Phytopathol. 145:447-453. https://doi.org/10.1111/j.1439-0434.1997.tb00348.x
  60. Satisha, J., Doshi, P. and Adsule, P. G. 2008. Influence of rootstocks on changing the pattern of phenolic compounds in Thompson seedless grapes and its relationship to the incidence of powdery mildew. Turk. J. Agric. For. 32:1-9.
  61. Schippers, B., Bakker, A. W. and Bakker, P. A. H. M. 1987. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Ann. Rev. Phytopathol. 25:339-358. https://doi.org/10.1146/annurev.py.25.090187.002011
  62. Sofy, A. R., Sofy, M. R., Hmed, A. A., Dawoud, R. A., Refaey, E. E., Mohamed, H. I. and El-Dougdoug, N. K. 2021. Molecular characterization of the Alfalfa mosaic virus infecting Solanum melongena in Egypt and the control of its deleterious effects with melatonin and salicylic acid. Plants 28;10:459.
  63. Strange, R. N. 2003. Introduction to plant pathology. John Wiley and Sons, West Sussex, UK. 464 pp.
  64. Suslow, T. V. and Schroth, M. N. 1982. Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72:111-115. https://doi.org/10.1094/Phyto-72-111
  65. Sutton, P. N., Henry, M. J. and Hall, J. L. 1999. Glucose, and not sucrose, is transported from wheat to wheat powdery mildew. Planta 208:426-430. https://doi.org/10.1007/s004250050578
  66. Wang, L., Li, X.-B., Suo, H.-C., An, K., Luo, H.-M. and Liu, X.-J. 2017. Soft rot of potatoes caused by Bacillus amyloliquefaciens in Guangdong province, China. Can. J. Plant Pathol. 39:533-539. https://doi.org/10.1080/07060661.2017.1381994
  67. Watkins, G. M. 1981. Compendium of cotton disease (Disease compendia series). The American Phytopathological Society, Saint Paul, MN, USA. 87 pp.
  68. Zhong, L., Harijati, N., Ding, Y., Bao, Z. Z., Ke, W. D. and Hu, Z. L. 2015. First report of black rot of Sagittaria sagittifolia caused by Bacillus amyloliquefaciens in China. Plant Dis. 99:1270.