• 제목/요약/키워드: bioactive ingredient

검색결과 73건 처리시간 0.035초

가감생혈윤부음(加減生血潤膚飮)의 당뇨병 치료효과 확인을 위한 생리활성성분 분석과 경구포도당부하 연구 (Studies about the bioactive component analysis and an oral glucose tolerance test of Add-Omit-Saenghyeoryunbu-eum(AO-SHU) for confirmation of diabetes therapy)

  • 인정도;임대식;김원일
    • 대한한의학방제학회지
    • /
    • 제24권2호
    • /
    • pp.80-99
    • /
    • 2016
  • Objectives : Instrumental chemical analysis was utilized to investigate the effect of Add-Omit-Saenghyeoryunbu-eum(AO-SHU) on diabetic treatment. One of the most exciting, yet also controversial, arguments is the safety and biological mechanisms of the natural medicine on human body. Therefore, the aim of this study is to provide a better understanding on bioactive chemical components, hazards of heavy metal contamination and biological mechanism of the diabetic medicine composed of 12 different natural herbs. Methods : To study bioactive compound and metallic component in the diabetic medicine in detail, LC-MS/MS (Liquid Chromatography-Mass/Mass), GC (Gas Chromatography) and ICP (Inductively Coupled Plasma) were utilized to characterize the extract of the diabetic medicine and the result was compared with 18 marker substances selected from literature survey. In addition, in vitro assay experiments including GPR 119 activity and human DGAT-1 inhibition, and OGTT (Oral Glucose Tolerance Test) were performed to verify the effectiveness of this medicine on diabetic treatment. Results : Out of 18 marker substances, 9 bioactive compounds were identified from LC-MS/MS analysis which include Citruline, Catalpol, Berberine, Ginsenoside Rb1, Ginsenoside Rg1, Oleanolic acid, β-Sitosterol, Mangiferin, and Schizandrin. ICP study on 245 residual pesticides revealed that 239 species were not detected but 6 species, Dimethomorph, Trifloxystrobin, Pyraclostrobin, Isoprocarb, Carbaryl and Flubendiamide, while the amounts are trace levels, below permitted concentrations. The biological activity was observed in vitro assay and Oral Glucose Tolerance Test(OGTT), which are consistent with a preliminary clinical test result, a drop in blood sugar level after taking this herbal medicine. Conclusions : Instrumental chemical analysis using LC-MS/MS, GC, and ICP was conducted successfully to identify bioactive compounds in AO-SHU for the treatment of diabetes, finding 9 bioactive compounds. Furthermore, in vitro assay experiments and OGTT show that AO-SHU has its biological activities, which imply that it can be a candidate for the future diabetes remedy.

Identification of Proapoptopic, Anti-Inflammatory, Anti-Proliferative, Anti-Invasive and Anti-Angiogenic Targets of Essential Oils in Cardamom by Dual Reverse Virtual Screening and Binding Pose Analysis

  • Bhattacharjee, Biplab;Chatterjee, Jhinuk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3735-3742
    • /
    • 2013
  • Background: Cardamom (Elettaria cardamom), also known as "Queen of Spices", has been traditionally used as a culinary ingredient due to its pleasant aroma and taste. In addition to this role, studies on cardamom have demonstrated cancer chemopreventive potential in in vitro and in vivo systems. Nevertheless, the precise poly-pharmacological nature of naturally occurring chemo-preventive compounds in cardamom has still not been fully demystified. Methods:In this study, an effort has been made to identify the proapoptopic, anti-inflammatory, anti-proliferative, anti-invasive and anti-angiogenic targets of Cardamom's bioactive principles (eucalyptol, alpha-pinene, beta-pinene, d-limonene and geraniol) by employing a dual reverse virtual screening protocol. Experimentally proven target information of the bioactive principles was annotated from bioassay databases and compared with the virtually screened set of targets to evaluate the reliability of the computational identification. To study the molecular interaction pattern of the anti-tumor action, molecular docking simulation was performed with Auto Dock Pyrx. Interaction studies of binding pose of eucalyptol with Caspase 3 were conducted to obtain an insight into the interacting amino acids and their inter-molecular bondings. Results:A prioritized list of target proteins associated with multiple forms of cancer and ranked by their Fit Score (Pharm Mapper) and descending 3D score (Reverse Screen 3D) were obtained from the two independent inverse screening platforms. Molecular docking studies exploring the bioactive principle targeted action revealed that H- bonds and electrostatic interactions forms the chief contributing factor in inter-molecular interactions associated with anti-tumor activity. Eucalyptol binds to the Caspase 3 with a specific framework that is well-suited for nucleophilic attacks by polar residues inside the Caspase 3 catalytic site. Conclusion:This study revealed vital information about the poly-pharmacological anti-tumor mode-of-action of essential oils in cardamom. In addition, a probabilistic set of anti-tumor targets for cardamom was generated, which can be further confirmed by in vivo and in vitro experiments.

비름(Amaranth)과 명아주(Quinoa) 재배종의 기능성 물질과 변이 (Functional Ingredient and Their Some Variance in Amaranth and Quinoa)

  • 이재학;김기준;이정일;이승택;류수노
    • 한국작물학회지
    • /
    • 제41권spc1호
    • /
    • pp.145-165
    • /
    • 1996
  • Amaranth(Amaranthus spp. L.) and quinoa (Chenpodium quinoa Willd.) are old crops from South, Central America and Central Asia and their grains have been identified as very promising food crops because of their exceptional nutritive value. Squalene is an important ingredient in skin cosmetics and computer disc lubricants as well as bioactive materials such as inhibition of fungal and mammalian sterol biosynthesis, antitumor, anticancer, and immunomodulation. Amaranth has a component called squalene (2,6,10,15,19,23-hexamethyl-2,6,10,14,22-tetraco-sahexaene) about 1/300 of the seed and $5\~8\%$ of its seed oil. Oil and squalene content in amaranth seed were different for the species investigated. Squalene content in seed oil also increased by $15.5\%$ due to puffing and from 6.96 to $8.01\%$ by refining and bleaching. Saponin concentrations in quinoa seed ranged 0.01 to $5.6\%$. Saponins are located in the outer layers of quinoa grain. These layers include the perianth, pericarp, a seed coat layer, and a cuticle like structure. Oleanane-type triterpenes saponins are of great interest because of their diverse pharmacological properties, for instance, anti-inflammatory, antibiotic, contraceptive, and cholesterol-lowering effects. It is known that quinoa contains a number of structurally diverse saponins including the aglycones, oleanolic acid, hederagenin, and phytolaccagenic acid, which are new potential in gredient for pharmacological properties. It is likely that these saponin levels will be considerably affected by genetic, agronomic and environmental factors as well as by processing. With the current enhanced public interest in health and nutrition amaranth and quinoa will most likely remain in the immediate future within the realm of exotic health foods until such time as agricultural production meets the quantities and qualify required by industrial food manufacturers.

  • PDF

American Ginseng: Research Developments, Opportunities, and Challenges

  • Punja, Zamir K.
    • Journal of Ginseng Research
    • /
    • 제35권3호
    • /
    • pp.368-374
    • /
    • 2011
  • American ginseng (Panax quinquefolius L.) is grown in some regions of the USA and Canada and marketed for its health promoting attributes. While cultivation of this plant species has taken place in North America for over 100 years, there are many challenges that need to be addressed. In this article, the current production method used by growers is described and the challenges and opportunities for research on this valuable plant are discussed. These include studies on pharmacological activity, genetic diversity within the species, genetic improvement of currently grown plants, molecular characterization of gene expression, and management of diseases affecting plant productivity. The current research developments in these areas are reviewed and areas requiring further work are summarized. Additional research should shed light on the nature of the bioactive compounds and their clinical effects, and the molecular basis of active ingredient biosynthesis, and provide more uniform genetic material as well as improved plant growth, and potentially reduce losses due to pathogens.

세이보리(S. hortensis)의 정유성분과 대사체 분석에 대하여 (Essential Oil Ingredient and Metabolites Analyses in Savory (Satureja hortensis))

  • 신경순;조태동
    • 한국환경과학회지
    • /
    • 제31권3호
    • /
    • pp.255-263
    • /
    • 2022
  • The relationship between environmental growth conditions of savory(Satureja hortensis) and Zn and vitamin B3 has been previously reported. Based on these results, HPLC and GC-MS were used to investigate the levels of phenolic compounds and perform metabolite analysis, respectively, in plants collected from different areas. Differences were observed in the levels of polyphenols and flavonoids depending on sampled areas and natural conditions. Next, HPLC and metabolite analyses confirmed the presence of bioactive substances. The results also showed that the longer the storage time, the higher was the content of carvacrol and of rosmarinic acid. Finally, the difference in the active ingredients was minimal when plants were cultivated under growth conditions similar to those in the place of origin.

Bioactive lipids in gintonin-enriched fraction from ginseng

  • Cho, Hee-Jung;Choi, Sun-Hye;Kim, Hyeon-Joong;Lee, Byung-Hwan;Rhim, Hyewon;Kim, Hyoung-Chun;Hwang, Sung-Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.209-217
    • /
    • 2019
  • Background: Ginseng is a traditional herbal medicine for human health. Ginseng contains a bioactive ligand named gintonin. The active ingredient of gintonin is lysophosphatidic acid C18:2 (LPA C18:2). We previously developed a method for gintonin-enriched fraction (GEF) preparation to mass-produce gintonin from ginseng. However, previous studies did not show the presence of other bioactive lipids besides LPAs. The aim of this study was to quantify the fatty acids, lysophospholipids (LPLs), and phospholipids (PLs) besides LPAs in GEF. Methods: We prepared GEF from white ginseng. We used gas chromatography-mass spectrometry for fatty acid analysis and liquid chromatography-tandem mass spectrometry for PL analysis, and quantified the fatty acids, LPLs, and PLs in GEF using respective standards. We examined the effect of GEF on insulin secretion in INS-1 cells. Results: GEF contains about 7.5% linoleic (C18:2), 2.8% palmitic (C16:0), and 1.5% oleic acids (C18:1). GEF contains about 0.2% LPA C18:2, 0.06% LPA C16:0, and 0.02% LPA C18:1. GEF contains 0.08% lysophosphatidylcholine, 0.03% lysophosphatidylethanolamine, and 0.13% lysophosphatidylinositols. GEF also contains about 1% phosphatidic acid (PA) 16:0-18:2, 0.5% PA 18:2-18:2, and 0.2% PA 16:0-18:1. GEFmediated insulin secretion was not blocked by LPA receptor antagonist. Conclusion: We determined four characteristics of GEF through lipid analysis and insulin secretion. First, GEF contains a large amount of linoleic acid (C18:2), PA 16:0-18:2, and LPA C18:2 compared with other lipids. Second, the main fatty acid component of LPLs and PLs is linoleic acid (C18:2). Third, GEF stimulates insulin secretion not through LPA receptors. Finally, GEF contains bioactive lipids besides LPAs.

노니 지표성분 6종과 발효노니의 면역활성 증진 효과 (Enhancement of Immune Activities of Fermented Morinda citrifolia L. (Noni) and Six Marker Compounds)

  • 최선일;한웅호;문효;이세정;김용덕;나임정;성금수;이옥환
    • 한국식품위생안전성학회지
    • /
    • 제37권1호
    • /
    • pp.29-37
    • /
    • 2022
  • 본 연구에서는 발효노니를 건강기능식품 소재로 활용 시 기초자료로 제공하고자 발효노니 추출물 및 지표성분의 면역활성 증진 효과를 평가하였다. RAW 264.7 대식세포에서 발효노니 추출물 및 지표성분 6종을 처리하여 XTT 세포독성평가, Nitric Oxide 생성 측정, Cyokine 생성 측정, immune marker genes 발현분석 수행하였다. 뿐만 아니라 양성대조군으로 LPS와 기능성 원료로 사용되고 있는 발효홍삼 추출물을 사용하였다. 그 결과 모든 처리 농도 및 처리군에서 세포독성이 관찰되지 않았으며, 지표성분 6종 중 SCP 및 ASE에서 NO 생성이 증가됨을 확인하였다. 뿐만 아니라 ASE 처리군에서는 IL-6 및 IL-1β의 생성이 증가되었으며, iNOS 및 TNF-α의 immune marker genes 발현이 증가됨을 확인하였다. 발효노니 추출물 효능 평가에서는 발효시 NO 생성 및 IL-6, IL-1β의 생성, COX2의 발현이 증가되는 것으로 나타났다. 이러한 연구 결과는 발효노니 추출물 및 지표성분의 선천면역 활성증가를 타나내며 노니 및 발효노니 표준화 연구에서 지표성분으로 사용 가능성을 제시한다. 따라서 발효노니는 면역증진 활성을 갖는 제품 개발에 있어서 유용한 기능성 식품소재로써 사용될 수 있으며, 우수한 효능을 나타내는 지표성분은 유용성분으로 이용이 가능할 것으로 사료된다.

제주 수산가공부산물 유래 기능성 소재 탐색 (Development of Bioactive Substances from Fishery Processing by-products in Jeju)

  • 강나래;이원우;고주영;김현수;김준성;안용석;고창익;정준범;전유진
    • 한국해양바이오학회지
    • /
    • 제6권2호
    • /
    • pp.62-67
    • /
    • 2014
  • In this study, we investigated the bioactive substances of the Alcalase hydrolysate obtained from fishery processing by-products in Jeju by measuring bioactivities including radical scavenging acitivty, cytoprotective activity against 2,2-azobis-(2-amidino-propane) dihydrochloride (AAPH), and ACE inhibitory activity. This study is important because of utilization of unused fishery processing by-products in Jeju. The Alcalase hydrolysate was prepared through the hot water extraction and enzymatic hydrolysis, and then further separation of the Alcalase hydrolysate was performed by ultrafiltration using 10 kDa molecular weight cut-off membrane. The Alcalase hydrolysate showed the relatively higher DPPH and peroxyl radical scavenging activity ($IC_{50}$ value; 1.30 mg/ml and 0.888 mg/ml, respectively). Also, the Alcalase hydrolysate showed the ACE inhibitory activity with 1.87 mg/ml of $IC_{50}$ value. These biological activities are increased over 1.2 or 2.5 times through the ultrafiltration of the Alcalase hydrolysate. Therefore, the Alcalase hydrolysate obtained from fishery processing by-products in Jeju and the different molecular weight fractions should be given consideration for food and cosmetics ingredient. Furthermore, this research on the utility of fishery processing by-products might be a useful tool into the industry.

자생식물 11종의 항산화 및 항주름에 관한 향장효능 검증 (A Verification of Cosmetic Effect about Anti-oxidant and Anti-wrinkle of 11 Native Plants)

  • 장영아
    • 생명과학회지
    • /
    • 제26권7호
    • /
    • pp.782-788
    • /
    • 2016
  • 본 연구에서는 화장품의 천연소재로 사용 가능함을 알아보기 위해 추출부위가 각각 다른 총 11종의 자생식물의 항산화, 항주름에 관한 생리활성 효능을 스크리닝 하였다. DPPH scavenging assay 측정결과 100 μg/ml 농도에서 70% 넘는 활성을 나타낸 시료는 순비기나무, 송이고랭이, 방울고랭이, 큰고랭이, 자귀풀이었다. Hydrogen peroxide scavenging assay 측정결과 1,000 μg/ml 농도에서 물꼬챙이골을 제외한 10종이 90%넘는 활성을 나타내었다. Xanthine oxidase scavenging assay 측정결과 1,000 μg/ml 농도에서 순비기나무(Leaf; 86.3%)가 가장 높은 활성을 나타냈다. 4가지 항산화 실험에서 모두 효능이 우수하게 나온 시료는 순비기나무, 송이고랭이, 방울고랭이, 큰고랭이, 자귀풀이며 그중 collagenase 저해활성 측정결과 방울고랭이가 가장 높은 저해 활성을 나타내어 항산화 및 항주름에 효능이 있는 시료로 나타났다. 이러한 결과를 바탕으로 활성이 높은 자생식물은 화장품에 사용되는 천연소재로 이용이 가능한 좋은 수종으로 판단된다.

현미와 흑미의 항산화 성분 및 항산화 활성 (Antioxidative Components and Antioxidative Capacity of Brown and Black Rices)

  • 고미림;최혁준;한복경;유승석;김현석;최성원;허남윤;김창남;김병용;백무열
    • 산업식품공학
    • /
    • 제15권3호
    • /
    • pp.195-202
    • /
    • 2011
  • Physiological characteristics of brown rice and black rice were investigated to provide the fundamental information of physiological property of rice and to show the potential of rice as a functional ingredient. Bioactive compounds were extracted from brown and black rices with aqueous solvents like 80% ethanol. Total phenolics, flavonoids and antioxidative capacity of brown and black rices' extracts were determined. Brown rice showed much higher amount of total phenolics and flavonoid contents as well as antioxidative capacity than those of milled rice indicating that most of bioactive compounds are located in the bran layer. Black rice showed higher total phenolics and flavonoid contents and antioxidative capacity than those of brown rices. The highest antioxidative capacity was obtained from Heugjinju followed by Heugseol, Sinnongheug-chal, Hopum and Samkwang. This result indicated that antioxidative capacity is affected by total phenolics and flavonoid contents. Both brown and black rices contained higher amount of ferulic acid than that of p-coumaric acid.