DOI QR코드

DOI QR Code

Enhancement of Immune Activities of Fermented Morinda citrifolia L. (Noni) and Six Marker Compounds

노니 지표성분 6종과 발효노니의 면역활성 증진 효과

  • Choi, Sun-Il (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Han, Xionggao (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Men, Xiao (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Lee, Se-Jeong (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Kim, Yong Deok (NSTBIO Co., Ltd.) ;
  • La, Im-Joung (Atomy R&D Center) ;
  • Seong, Geum-Su (Korea Food Research Institute) ;
  • Lee, Ok-Hwan (Department of Food Biotechnology and Environmental Science, Kangwon National University)
  • Received : 2022.01.25
  • Accepted : 2022.02.16
  • Published : 2022.02.28

Abstract

This study will evaluate the effect of fermented Morinda citrifolia L. extracts and its marker compounds to provide baseline data for utilizing Morinda citrifolia L. as functional health products. Morinda citrifolia L. and six marker compounds were processed on RAW 246.7 macrophage to test for XTT Cytotoxicity, measure Nitric Oxide and Cyokine formation, and analyze the expression of immune marker genes. Furthermore, LPS and fermented red ginseng extract, a common functional ingredient, are used as positive controls. Our results showed that fermented Morinda citrifolia L and six bioactive compounds did not have any cytotoxic effect in all treatment concentrations and groups. Among six bioactive compounds, SCP and ASE confirmed the formation of NO. In addition, the ASE treatment group showed increased formation of IL-6 and IL-1β and the expression of iNOS and TNF-α. Also, fermented Morinda citrifolia L extract activated the macrophage by enhancing the production of nitric oxide (NO), interleukin (IL)-6, and IL-1β, and the expression of COX2 compared to Morinda citrifolia L. extracts. The result of the study showed that Fermented Morinda citrifolia L. (Noni) and marker compound enhance the innate immunity activity and suggested that the bioactive compound could be applied as a marker compound. Thus, Fermented Morinda citrifolia L. (Noni) could be used as functional food material to develop immunity-enhancing products, and highly functional marker compounds can be utilized as the effective components.

본 연구에서는 발효노니를 건강기능식품 소재로 활용 시 기초자료로 제공하고자 발효노니 추출물 및 지표성분의 면역활성 증진 효과를 평가하였다. RAW 264.7 대식세포에서 발효노니 추출물 및 지표성분 6종을 처리하여 XTT 세포독성평가, Nitric Oxide 생성 측정, Cyokine 생성 측정, immune marker genes 발현분석 수행하였다. 뿐만 아니라 양성대조군으로 LPS와 기능성 원료로 사용되고 있는 발효홍삼 추출물을 사용하였다. 그 결과 모든 처리 농도 및 처리군에서 세포독성이 관찰되지 않았으며, 지표성분 6종 중 SCP 및 ASE에서 NO 생성이 증가됨을 확인하였다. 뿐만 아니라 ASE 처리군에서는 IL-6 및 IL-1β의 생성이 증가되었으며, iNOS 및 TNF-α의 immune marker genes 발현이 증가됨을 확인하였다. 발효노니 추출물 효능 평가에서는 발효시 NO 생성 및 IL-6, IL-1β의 생성, COX2의 발현이 증가되는 것으로 나타났다. 이러한 연구 결과는 발효노니 추출물 및 지표성분의 선천면역 활성증가를 타나내며 노니 및 발효노니 표준화 연구에서 지표성분으로 사용 가능성을 제시한다. 따라서 발효노니는 면역증진 활성을 갖는 제품 개발에 있어서 유용한 기능성 식품소재로써 사용될 수 있으며, 우수한 효능을 나타내는 지표성분은 유용성분으로 이용이 가능할 것으로 사료된다.

Keywords

Acknowledgement

본 논문은 2020년도 중소벤처기업부의 중소기업기술개발사업 지원(S2840161)과 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(NRF-2021R1A6A1A03044242) 및 4단계 두뇌한국21 사업(4299990913942)으로 지원된 연구로 이에 감사드립니다.

References

  1. Howell, M., Shepherd, M., The immune system. Anaesth. Intensive Care Med., 19, 575-578 (2018). https://doi.org/10.1016/j.mpaic.2018.08.014
  2. Wluka, A., Olszewski, W.L., Innate and adaptive processes in the spleen. Ann. Transplant., 11, 22-29 (2006).
  3. Cruvinel, W.D.M., Mesquita Junior, D., Araujo, J.A.P., Catelan, T.T.T., Souza, A.W.S.D., Silva, N.P.D., Andrade, L.E.C., Immune system: Part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Rev. Bras. Reumatol., 50, 434-447 (2010). https://doi.org/10.1590/S0482-50042010000400008
  4. Zhang, W., Ma, W., Zhang, J., Song, X., Sun, W., Fan, Y., The immunoregulatory activities of astragalus polysaccharide liposome on macrophages and dendritic cells. Int. J. Biol. Macromol., 105, 852-861 (2017). https://doi.org/10.1016/j.ijbiomac.2017.07.108
  5. Luster, A.D., The role of chemokines in linking innate and adaptive immunity. Curr. Opin. Immunol., 14, 129-135 (2002). https://doi.org/10.1016/S0952-7915(01)00308-9
  6. Moretta, A., Marcenaro, E., Parolini, S., Ferlazzo, G., Moretta, L., NK cells at the interface between innate and adaptive immunity. Cell Death Differ., 15, 226-233 (2008). https://doi.org/10.1038/sj.cdd.4402170
  7. Vaziri, N.D., Pahl, M.V., Crum, A., Norris, K., Effect of uremia on structure and function of immune system. J. Ren. Nutr., 22, 149-156 (2012). https://doi.org/10.1053/j.jrn.2011.10.020
  8. Esche, C., Stellato, C., Beck, L.A., Chemokines: key players in innate and adaptive immunity. J. Invest. Dermatol., 125, 615-628 (2005). https://doi.org/10.1111/j.0022-202X.2005.23841.x
  9. Getz, G.S., Bridging the innate and adaptive immune systems. J. Lipid Res., 46, 619-622 (2005). https://doi.org/10.1194/jlr.E500002-JLR200
  10. Choi, S.I., Han, X., Men, X., Lee, S,J., Park, M.H., Lee, O.H., Yang, J.M., Choi, Y.E., Cho, J.H., Development and validation of an analytical method for 2-furoic acid in Benincasa hispida extracts (HR1901-W). J. Agri. Life Environ. Sci., 33, 311-320 (2021).
  11. Wang, M.Y., West, B.J., Jensen, C.J., Nowicki, D., Su, C., Palu, A.K., Anderson, G., Morinda citrifolia (noni): A literature review and recent advances in noni research. Acta Pharmacol. Sin., 23, 1127-1141 (2002).
  12. Furusawa, E., Hirazumi, A., Story, S., Jenson, J., Antitumor potential of a polysaccharide-rich substance from the fruit juice of Morinda citrifolia (noni) on sarcoma 180 ascites tumour in mice. Phytother. Res., 17, 1158-1164 (2003). https://doi.org/10.1002/ptr.1307
  13. Su, B.N., Pawlus, A.D., Jung, H.A., Keller, W.J., McLaughlin, J.L., Kinghorn, A.D., Chemical constituents of the fruits of Morinda citrifolia (noni) and their antioxidante activity. J. Nat. Prod., 68, 592-595 (2005). https://doi.org/10.1021/np0495985
  14. Wang, M.Y., Su, C., Cancer preventive effect of Morinda citrifolia (Noni). Ann. N. Y. Acad. Sci., 952, 161-168 (2001). https://doi.org/10.1111/j.1749-6632.2001.tb02737.x
  15. Motshakeri, M., Ghazali, H.M., Nutritional, phytochemical and commercial quality of noni fruit: A multi-beneficial gift from nature. Trends Food Sci. Technol., 45, 118-129 (2015). https://doi.org/10.1016/j.tifs.2015.06.004
  16. Garcia-Vilas, J.A., Quesada, A.R., Medina, M.A., Damnacanthal, a noni anthraquinone, inhibits c-Met and is a potent antitumor compound against HepG2 human hepatocellular carcinoma cells. Sci. Rep., 5, 1-9 (2015).
  17. Murata, K., Abe, Y., Futamura-Masuda, M., Uwaya, A., Isami, F., Deng, S., Matsuda, H., Effect of Morinda citrifolia fruit extract and its iridoid glycosides on blood fluidity. J. Nat. Med., 68, 498-504 (2014). https://doi.org/10.1007/s11418-014-0826-z
  18. Ahmad, A.N., Daud, Z.A.M., Ismail, A., Review on potential therapeutic effect of Morinda citrifolia L. Curr. Opin. Food Sci., 8, 62-67 (2016). https://doi.org/10.1016/j.cofs.2016.03.002
  19. Almeida, E.S., de Oliveira, D., Hotza, D., Properties and applications of Morinda citrifolia (noni): A review. Compr. Rev. Food Sci. Food Saf., 18, 883-909 (2019). https://doi.org/10.1111/1541-4337.12456
  20. Yadav, N.P., Dixit, V.K., Recent approaches in herbal drug standardization. Int. J. Integr. Biol., 2, 195-203 (2008).
  21. Ong, E.S., Extraction methods and chemical standardization of botanicals and herbal preparations. J. Chromatogr. B, 812, 23-33 (2004). https://doi.org/10.1016/S1570-0232(04)00647-6
  22. Lee, K.H., Na, H.J., Song, C.K., Kang, S.Y., Kim, S., Quercetin quantification in a Jeju Dendropanax morbifera Lev. extract by varying different parts, harvest times, and extraction solvents. Korean J. Food Preserv., 25, 344-350 (2018). https://doi.org/10.11002/kjfp.2018.25.3.344
  23. Deng, S., West, B.J., Palu, A.K., Jensen, C.J., Determination and comparative analysis of major iridoids in different parts and cultivation sources of Morinda citrifolia. Phytochem. Anal., 22, 26-30 (2011). https://doi.org/10.1002/pca.1246
  24. Abou Assi, R., Darwis, Y., Abdulbaqi, I.M., Khan, A.A., Vuanghao, L., Laghari, M.H., Morinda citrifolia (Noni): A comprehensive review on its industrial uses, pharmacological activities, and clinical trials. Arab. J. Chem., 10, 691-707 (2017). https://doi.org/10.1016/j.arabjc.2015.06.018
  25. Ikeda, R., Wada, M., Nishigaki, N., Nakashima, K., Quantification of coumarin derivatives in Noni (Morinda citrifolia) and their contribution of quenching effect on reactive oxygen species. Food Chem., 113, 1169-1172 (2009). https://doi.org/10.1016/j.foodchem.2008.08.067
  26. Lewis Lujan, L.M., Assanga, I., Bernard, S., Rivera-Castaneda, E.G., Gil-Salido, A.A., Acosta-Silva, A.L., Meza-Cueto, C.Y., Rubio-Pino, J.L., Nutritional and phenolic composition of Morinda citrifolia L.(Noni) fruit at different ripeness stages and seasonal patterns harvested in Nayarit, Mexico. Int. J. Food Sci. Nutr., 3, 421-429 (2014). https://doi.org/10.11648/j.ijnfs.20140305.19
  27. Ilc, T., Parage, C., Boachon, B., Navrot, N., Werck-Reichhart, D., Monoterpenol oxidative metabolism: role in plant adaptation and potential applications. Front. Plant Sci., 7, 509 (2016). https://doi.org/10.3389/fpls.2016.00509
  28. Tundis, R., Loizzo, M.R., Menichini, F., Statti, G.A., Menichini, F., Biological and pharmacological activities of iridoids: Recent developments. Mini-Rev. Med. Chem., 8, 399- 420 (2008). https://doi.org/10.2174/138955708783955926
  29. Robe, K., Izquierdo, E., Vignols, F., Rouached, H., Dubos, C., The coumarins: secondary metabolites playing a primary role in plant nutrition and health. Trends Plant Sci., 26, 248-259 (2021). https://doi.org/10.1016/j.tplants.2020.10.008
  30. Bai, Y., Li, D., Zhou, T., Qin, N., Li, Z., Yu, Z., Hua, H., Coumarins from the roots of Angelica dahurica with antioxidant and antiproliferative activities. J. Funct. Foods, 20, 453-462 (2016). https://doi.org/10.1016/j.jff.2015.11.018
  31. Rein, M.J., Renouf, M., Cruz-Hernandez, C., Actis-Goretta, L., Thakkar, S.K., da Silva Pinto, M., Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol., 75, 588-602 (2013). https://doi.org/10.1111/j.1365-2125.2012.04425.x
  32. Cheng, Y., Li, P., Hu, B., Xu, L., Liu, S., Yu, H., Guo, Y., Xie, Y., Yao, W., Qian, H., Correlation analysis reveals the intensified fermentation via Lactobacillus plantarum improved the flavor of fermented noni juice. Food Biosci., 43, 101234 (2021). https://doi.org/10.1016/j.fbio.2021.101234
  33. Wang, Z., Dou, R., Yang, R., Cai, K., Li, C., Li, W., Changes in phenols, polysaccharides and volatile profiles of noni (Morinda citrifolia L.) juice during fermentation. Molecules, 26, 2604 (2021). https://doi.org/10.3390/molecules26092604
  34. Ali, S., Sudha, K.G., Karunakaran, G., Kowsalya, M., Kolesnikov, E., Rajeshkumar, M.P., Green synthesis of stable antioxidant, anticancer and photocatalytic activity of zinc oxide nanorods from Leea asiatica leaf. J. Biotechnol., 329, 65-79 (2021). https://doi.org/10.1016/j.jbiotec.2021.01.022
  35. Charbaji, A., Heidari-Bafroui, H., Anagnostopoulos, C., Faghri, M., A new paper-mased microfluidic device for improved detection of nitrate in water. Sensors, 21, 102 (2021).
  36. Piacenza, L., Trujillo, M., Radi, R., Reactive species and pathogen antioxidant networks during phagocytosis. J. Exp. Med., 216, 501-516 (2019). https://doi.org/10.1084/jem.20181886
  37. Ahmad, R., Hussain, A., Ahsan, H., Peroxynitrite: cellular pathology and implications in autoimmunity. J. Immunoassay Immunochem., 40, 123-138 (2019). https://doi.org/10.1080/15321819.2019.1583109
  38. Striz, I., Brabcova, E., Kolesar, L., Sekerkova, A., Cytokine networking of innate immunity cells: a potential target of therapy. Clin. Sci., 126, 593-612 (2014). https://doi.org/10.1042/CS20130497
  39. Borish, L.C., Steinke, J.W., 2. Cytokines and chemokines. J. Allergy Clin. Immunol., 111, S460-S475 (2003). https://doi.org/10.1067/mai.2003.108
  40. Lee, H.J., Kang, G.J., Yoon, W.J., Kang, H.K., Kim, Y.S., Kim, S.M., Yoo, E.S., Anti-inflammatory effect of unripe fruit of citrus grandis osbeck in RAW 264.7 and HaCaT Cells. Kor. J. Pharmacogn., 37, 74-80 (2006).
  41. Chang, L.P., Lai, Y.S., Wu, C.J., Chou, T.C., Liquid perfluorochemical inhibits inducible nitric oxide synthase expression and nitric oxide formation in lipopolysaccharide-treated RAW 264.7 macrophages. J. Phaarmacol., 111, 147-154 (2009).
  42. Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S.A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J.T., Sahebkar, A., Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol., 233, 6425-6440 (2018).
  43. Oh, M.Y., Infection and Innate Immunity. Korean J. Pediatr., 48, 1153-1161 (2005).
  44. Kwon, H.Y., Choi, S.I., Cho, B.Y., Choi, S.H., Sim, W.S., Xionggao, H., Jang, G.W., Lee, O.H., Nitrite scavenging activity and anti-inflammatory effects of standardized Cirsium setidens extract. Korean J. Food Preserv., 26, 343-349 (2019). https://doi.org/10.11002/kjfp.2019.26.3.343
  45. Fujiwara, N., Kobayashi, K., Macrophages in inflammation. Curr. Drug Targets Inflamm. Allergy, 4, 281-286 (2005). https://doi.org/10.2174/1568010054022024
  46. Preshaw, P.M., Taylor, J.J., How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis?. J. Clin. Periodontol., 38, 60-84 (2011). https://doi.org/10.1111/j.1600-051X.2010.01671.x
  47. Harizi, H., The immunobiology of prostanoid receptor signaling in connecting innate and adaptive immunity. BioMed Res. Int., 683405 (2013). https://doi.org/10.1155/2013/683405
  48. Choi, S.I., Kwon, H.Y., La, I.J., Jo, Y.H., Han, X., Men, X., Lee, S.J., Kim, Y.D., Seong, G.S., Lee, O.H., Development and validation of an analytical method for deacetylasperulosidic acid, asperulosidic acid, scopolin, asperuloside and scopoletin in fermented Morinda citrifolia L.(Noni). Separations, 8, 80 (2021). https://doi.org/10.3390/separations8060080