• Title/Summary/Keyword: bio-medical

Search Result 1,468, Processing Time 0.024 seconds

Calculation of Effective Half-life of Gamma Emission Radionuclide using Bio-kinetic Model (생체역동학 모델을 이용한 감마선 방출 핵종의 유효반감기 계산)

  • Lee, Sang-Kyung;Jeong, Kyu-Hwan;Lee, Ji-Yon;Kim, Bong-Gi;Kim, Jung-Min
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.277-285
    • /
    • 2018
  • Patients administered radioisotope for medical purposes are regulated by each country to quarantine them until their body's radioactivity contents decrease below release criteria. To predict the quarantine period and provide it to medical staffs and patients, it is necessary to approach the assessment of the exposure dose of persons due to patients in a realistic manner. For this purpose, a whole-body effective half-life should be applied to the dose assessment equation instead of the physical half-life. In this study, we constructed a bio-kinetic model for each nuclear species based on the ICRP publication to obtain a whole-body effective half-life of 10 unsealed gamma-ray emitting nuclei from the notification of Nuclear Safety and Security Commission, and calculated the effective half-life mathematically by simulating the distribution of the radioisotope administered in the whole body as well as each organ scale. The whole-body effective half-life of $^{198}Au$, $^{67}Ga$, $^{123}I$, $^{111}In$, $^{186}Re$, $^{99m}Tc$, and $^{201}TI$ were 1,93, 2.57, 0.295, 2.805, 1.561, 0.245, and 2.397 days respectively. However, it was found to be undesirable to offer a single value of the effective half-life of $^{125}I$, $^{131}I$, and $^{169}Yb$ because the changes in the effective half-life show no linearity. A bio-kinetic model created for the internal exposure assessment has been shown to be possible to calculate the effective half-life of radioisotopes administered in the patient's body, but subsequent studies of radiolabeled compounds are required as well.

Bio-signal Data Augumentation Technique for CNN based Human Activity Recognition (CNN 기반 인간 동작 인식을 위한 생체신호 데이터의 증강 기법)

  • Gerelbat BatGerel;Chun-Ki Kwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.90-96
    • /
    • 2023
  • Securing large amounts of training data in deep learning neural networks, including convolutional neural networks, is of importance for avoiding overfitting phenomenon or for the excellent performance. However, securing labeled training data in deep learning neural networks is very limited in reality. To overcome this, several augmentation methods have been proposed in the literature to generate an additional large amount of training data through transformation or manipulation of the already acquired traing data. However, unlike training data such as images and texts, it is barely to find an augmentation method in the literature that additionally generates bio-signal training data for convolutional neural network based human activity recognition. Thus, this study proposes a simple but effective augmentation method of bio-signal training data for convolutional neural network based human activity recognition. The usefulness of the proposed augmentation method is validated by showing that human activity is recognized with high accuracy by convolutional neural network trained with its augmented bio-signal training data.

A Study on the Development of Medical Service Robot (의료용 서비스 로봇 개발에 관한 연구)

  • Kang, Sung-In;Park, Yoon-A;Oh, Am-Suk;Jean, Je-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.77-80
    • /
    • 2011
  • Medical robot has four fields. Surgery assistant robot, robotic surgery, Surgery Simulator, rehabilitation robot. Thus, medical robots is often high precision and reliability requirements for operations are being developed. Medical service robot's another sector is care for service robots. Care services robot is the hospital's reception work and biometric data acquisition of patients, the hospital in location and content information provide to patients. But now medical service robot practical acceptance process failed to progress. In this paper were the medical service robot systems design and implementation. Implemented the robot system is using the standard protocols for the exchange of medical information and can be linked with hospital information system. The hospital's patient reception and processing, to provide care waiting number information.

  • PDF

Isolation and Identification of Tyrosinase Inhibitors from Loranthus tanakae

  • Hwang, Woonsang;Park, Cheolson;Kim, Jaehyun;Ko, In-Young;Lee, Kooyeon
    • Korean Journal of Plant Resources
    • /
    • v.30 no.6
    • /
    • pp.618-622
    • /
    • 2017
  • Various bioactive substances are found in Loranthus tanakae, including quercetin 3-rhamnoside (1), kaempferol 3-rhamnoside (2), rhamnetin 3-rhamnoside (3), and rhamnocitrin 3-rhamnoside (4), which inhibit tyrosinase. These compounds are mainly found in the EtOAc fraction of L. tanakae extract and demonstrate higher rates of tyrosinase inhibition than ascorbic acid, which was used as a control. Our results suggest that L. tanakae extracts can be utilized in skin whitening cosmetics.

Design and Implementation of Flexible Sensor to Measure Mechanical Stiffness of Soft Particles (Soft Particle의 강성 측정을 위한 단순한 구조의 유연 물질 센서의 개발)

  • Ihn, Yong Seok;Yang, Minho;Koo, Ja Choon
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2016
  • Increasing interest of human health, building bio-database (Bio DB) has been become a hot issue in life science. Consequently, Single Cell Analysis (SCA) which can explain biodiversity of lives has been a significant factor for building Bio DB. In numerous studies from these analyses, they have been showed that mechanical properties of cells can serve explanation of biological heterogeneity and criterion of disease states. Therefore, measuring mechanical properties of cells have great potential to be used in bio-medical applications. However, traditionally, many researchers have undergone difficult and time consuming work because handling small sized cells usually requires high-skilled technique. Thus, this paper shows robotized stiffness measurement technique using fixed ended beam sensor, precision motorized stage and substrate which have wall structure.

Study of Noise Reducion in X-ray image (X-선 영상에서의 노이즈 제거에 대한 연구)

  • Park, Jong-Duk;Jeon, Sung-Chae;Huh, Young;Jin, Seong-Oh
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.391-392
    • /
    • 2006
  • In x-ray imaging system, twokinds of noises are involved. First, the charge generated from the radiation interaction with the detector during exposure is modeled by Poisson process. Second, the signal is then added by readout electronics noise, which is modeled by Gaussian distribution. In this paper, we applied Wiener filter and Wavelet to remove noise from medical X-ray image, the result shows that wavelet yield better segmentation results than the wiener filter.

  • PDF

Development of Portable Bio-signal Measurement System using Bluetooth for 24-hours Continuous Health Monitoring (24시간 건강상태 모니터링을 위한 Bluethooth를 사용한 소형 저전력 휴대형 Bio-signal 측정 장치를 개발)

  • 정현권;송길섭;나승유;이희영
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.81-84
    • /
    • 2001
  • This paper presents a potable bio-signal measurement system using Bluetooth for the 24-hours continuous health state monitoring of the elderly and the disabled. The measurement system has the functions of acquisition of various bio-signals, wireless data transmission and adjustment of parameters such as gain and cut-off frequency. This measurement system is designed according to the international specifications of the recommendation of AAMI (Association for the Advancement of Medical Instrumentation). The design targets of the developing system about volume and power consumption are 20x30x5mm$^3$ and 8mW.

  • PDF

A Study on the Optimization for Three Dimensional Reconstruction of Bio Surface Using by Stereo Vision (스테레오 비젼에 의한 생체표면 3차원 복원의 최적화 연구)

  • Lee, Kyungchai;Lee, Onseok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.107-113
    • /
    • 2017
  • Unlike regular images, there is no ground truth for bio surface images. Result of biosurface imaging is not only significantly affected by the environment and the condition of the bio surface, it requires more detailed expression than regular images. Therefore, unlike algorithms tested on regular images, studies on bio surface images requires a highly precise optimization process. We aim to optimize the graph cut algorithm, known to be the most outstanding among the stereo visions, by considering baseline, lambda, and disparity range. Optimal results were in the range of 1~10 for lambda. The disparity ranged from -30 to -50, indicating an optimal value in a slightly higher range. Furthermore, we verified the tested optimization data using SIFT.

Current Development in Bio-implantable Sensors

  • Swarup, Biswas;Yongju, Lee;Hyojeong, Choi;Hyeok, Kim
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.403-410
    • /
    • 2022
  • Flexible and wearable sensing technologies have emerged as a result of developments in interdisciplinary research across several fields, bringing together various subjects such as biology, physics, chemistry, and information technology. Moreover, various types of flexible wearable biocompatible devices, such customized medical equipment, soft robotics, bio-batteries, and electronic skin patches, have been developed over the last several years that are extensively employed to monitor biological signals. As a result, we present an updated overview of new bio-implantable sensor technologies for various applications and a brief review of the state-of-the-art technologies.

Bio-Medical Data Transmission System using Multi-level Visible Light based on Resistor Ladder Circuit (저항 사다리 회로 기반의 다중레벨 가시광을 이용하는 의료 데이터 전송 시스템)

  • An, Jinyoung;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • In this study, a multilevel visible light communication (VLC) system based on resistor ladder circuit is designed to transmit medical data. VLC technology is being considered as an alternative wireless communication due to various advantages such as ubiquity, license free operation, low energy consumption, and no radio frequency (RF) radiation characteristics. With VLC even in places where traditional RF communication (e.g., Wi-Fi) is forbidden, significant bio-medical signal including the electrocardiography (ECG) and photoplethysmography (PPG) data can be transmitted. More lives could be saved anywhere by this potential advantage of VLC with a fast emergency response time. A multilevel transmission scheme is adopted to improve the data capacity with keeping simplicity, where data transmission rate can increase by log2m times (m is the number of voltage levels) than that of conventional VLC transmission based on on/off keying. In order to generate multi-amplitudes, resistor ladder circuit, which is a basic principle of digital to analog convertor, is employed, and information is transferred through LED (Light-Emitting Diode) with different voltage level. In the receiver side, multilevel signal is detected by optical receiver including a photo diode. Then, the collected data are analyzed to serve the necessary medical care to the concerned patient.