• Title/Summary/Keyword: bio-inspired design

Search Result 40, Processing Time 0.018 seconds

Optimal design of bio-inspired isolation systems using performance and fragility objectives

  • Hu, Fan;Shi, Zhiguo;Shan, Jiazeng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.325-343
    • /
    • 2018
  • This study aims to propose a performance-based design method of a novel passive base isolation system, BIO isolation system, which is inspired by an energy dissipation mechanism called 'sacrificial bonds and hidden length'. Fragility functions utilized in this study are derived, indicating the probability that a component, element, or system will be damaged as a function of a single predictive demand parameter. Based on PEER framework methodology for Performance-Based Earthquake Engineering (PBEE), a systematic design procedure using performance and fragility objectives is presented. Base displacement, superstructure absolute acceleration and story drift ratio are selected as engineering demand parameters. The new design method is then performed on a general two degree-of-freedom (2DOF) structure model and the optimal design under different seismic intensities is obtained through numerical analysis. Seismic performances of the biologically inspired (BIO) isolation system are compared with that of the linear isolation system. To further demonstrate the feasibility and effectiveness of this method, the BIO isolation system of a 4-storey reinforced concrete building is designed and investigated. The newly designed BIO isolators effectively decrease the superstructure responses and base displacement under selected earthquake excitations, showing good seismic performance.

Nonlinear stability of bio-inspired composite beams with higher order shear theory

  • Nazira Mohamed;Salwa A. Mohamed;Alaa A. Abdelrhmaan;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.759-772
    • /
    • 2023
  • This manuscript presents a comprehensive mathematical model to investigate buckling stability and postbuckling response of bio-inspired composite beams with helicoidal orientations. The higher order shear deformation theory as well as the Timoshenko beam theories are exploited to include the shear influence. The equilibrium nonlinear integro-differential equations of helicoidal composite beams are derived in detail using the energy conservation principle. Differential integral quadrature method (DIQM) is employed to discretize the nonlinear system of differential equations and solve them via the Newton iterative method then obtain the response of helicoidal composite beam. Numerical calculations are carried out to check the validity of the present solution methodology and to quantify the effects of helicoidal rotation angle, elastic foundation constants, beam theories, geometric and material properties on buckling, postbuckling of bio-inspired helicoidal composite beams. The developed model can be employed in design and analysis of curved helicoidal composite beam used in aerospace and naval structures.

Static and modal analysis of bio-inspired laminated composite shells using numerical simulation

  • Faisal Baakeel;Mohamed A. Eltaher;Muhammad Adnan Basha;Ammar Melibari;Alaa A. Abdelrhman
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.347-368
    • /
    • 2023
  • In the first part of this study, a numerical simulation model was developed using the mechanical APDL software to validate the results of the 3D-elastisity theory on the laminated sandwich plate developed by Panago. The numerical simulation model showed a good agreement to the results of Pagano's theory in terms of deflection, normal stresses, and shear stresses. In the second part of this study, the developed numerical simulation model was used to define different plates dimensions and fibers layup orientations to examine the load response in terms of deflection and stresses. Further analysis was implemented on the natural frequencies of laminated xxx plates of the plates. The layup configurations include Unidirectional (UD), Cross-Ply (CP), Quasi-Isotropic (QI), the linear bio-inspired known as Linear-Helicoidal (LH), and the nonlinear bio-inspired known as Fibonacci-Helicoidal (FH). The following numerical simulation model can be used for the design and study of novel, sophisticated bio-inspired composite structures in a variety of configurations subjected to sinusoidal or constant loads.

Leg Mechanism Design and Control of Bio-inspired Robot for High Speed Legged Locomotion (고속 족형 운동을 위한 생체모사 로봇의 다리 메커니즘 설계 및 제어)

  • Park, Jongwon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.264-269
    • /
    • 2019
  • This paper presents mechanical design and control of a bio-inspired legged robot. To achieve a fast legged running mechanism, a novel linkage leg structure is designed based on hind legs of domestic cats. The skeletomuscular system and parallel leg movement of a cat are analyzed and applied to determine the link parameters. The hierarchical control architecture is designed according to the biological data to generate and modulate desired gaits. The effectiveness of the leg mechanism design and control is verified experimentally. The legged robot runs at a speed of 46 km/h, which is comparatively higher speed than other existing legged robots.

Design and Implementation of a Multi-Intelligent Agent based Platform for a Bio-Inspired System (생태계 모방 시스템을 위한 멀티 지능형 에이전트 기반의 플랫폼 설계 및 구현)

  • Moon, Joo-Sun;Nang, Jong-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.545-549
    • /
    • 2007
  • The Bio-Inspired System focuses on the creation of an effective system model for massive network applications and is being widely developed. However, the system has a problem-difficulty implementing three features in the system, which includes scalability, adaptability and survivability. To solve this problem, we designed an Ecogent as a multiple intelligence agent, and a Bio-platform to address the three features of scalability, adaptability and survivability. The Bio-Inspired System Platform consists of an ERS (Ecogent Runtime Services) Platform and a Bio-Platform. The ERS platform serves the basic functions of mobile agents, such as Registration, Life Cycle, Migration, Communication, Location and Fault Tolerance. The Bio-Platform includes the functions of Evolution Control and Stigmergy Control to address evolution and adaptation.

Design of an OMNeT++ based Parallel Simulator for a Bio-Inspired System and Its Performance on PC-Clusters (생태계 모방 시스템을 위한 OMNeT++ 기반 병렬 시뮬레이터의 설계 및 PC 클러스터 상에서의 성능 분석)

  • Moon, Joo-Sun;Nang, Jong-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.9
    • /
    • pp.416-424
    • /
    • 2007
  • The Bio-Inspired system is a computing model that emulates the objects in ecosystem which are evolving themselves and cooperate each other to perform some tasks. Since it could be used to solved the complex problems that have been very difficult to resolve with previous algorithms, there have been a lot of researches to develop an application based on the Bio-Inspired system. However, since this computing model requires the process of evolving and cooperating with a lot of objects and this process takes a lot of times, it has been very hard to develop an application based on this computing model. This paper presents a parallel simulator for a Bio-Inspired system that is designed and implemented with OMNeT++ on PC clusters, and proves its usefulness by showing its simulation performance for a couple of applications. In the proposed parallel simulator, the functions required in the ERS platform for evolving and cooperating between objects (called Ecogent) are mapped onto the functions of OMNeT++, and they are simulated on PC clusters simultaneously to reduce the total simulation time. The simulation results could be monitored with a GUI In realtime, and they are also recorded into DBMS for systematic analyses afterward. This paper shows the usefulness of the proposed system by analyzing its performances for simulating various applications based on Bio-Inspired system on PC clusters with 4 PCs.

Design and Manufacturing of Robotic Dolphin with Variable Stiffness Mechanism (가변강성 메커니즘을 적용한 로봇 돌고래 설계 및 제작)

  • Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • Bio-inspired underwater robots have been studied to improve the dynamic performance of fins, such as swimming speed and efficiency, which is the most basic performance. Among them, bio-inspired soft robots with a compliant tail fin can have high degrees of freedom. On the other hand, to improve the driving efficiency of the compliant fins, the stiffness of the tail fin should be changed with the driving frequency. Therefore, a new type of variable stiffness mechanism has been developed and verified. This study, which was inspired by the anatomy of a real dolphin, assessed a process of designing and manufacturing a robotic dolphin with a variable stiffness mechanism. By mimicking the vertebrae of a dolphin, the variable stiffness driving part was manufactured using subtractive and additive manufacturing. A driving tendon was placed considering the location of the tendon in the actual dolphin, and the additional tendon was installed to change its stiffness. A robotic dolphin was designed and manufactured in a streamlined shape, and the swimming speed was measured by varying the stiffness. When the stiffness of the tail fin was varied at the same driving frequency, the swimming speed and thrust changed by approximately 1.24 and 1.5 times, respectively.

Bio-inspired Walking and Swimming Underwater Robot Designing Concept and Simulation by an Approximated Model for the robot (유영과 보행이 가능한 생체모방 수중 로봇의 설계개념과 근사모델을 활용한 모의실험)

  • Kim, Hee-Joong;Jun, Bong-Huan;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.57-66
    • /
    • 2014
  • This paper describes the design concept of a bio-inspired legged underwater and estimating its performance by implementing simulations. Especially the leg structure of an underwater organism, diving beetles, is fully adopted to our designing to employ its efficiency for swimming. To make it possible for the robot to both walk and swim, the transformable kinematic model according to applications of the leg is proposed. To aid in the robot development and estimate swimming performance of the robot in advance, an underwater simulator has been constructed and an approximated model based on the developing robot was set up in the simulation. Furthermore, previous work that we have done, the swimming locomotion produced by a swimming patten generator based on the control parameters, is briefly mentioned in the paper and adopted to the simulation for extensive studies such as path planning and control techniques. Through the results, we established the strategy of leg joints which make the robot swim in the three dimensional space to reach effective controls.

Forearm Mechanism Inspired by Ligamentous Structure and Its Mobility Analysis (인대 구조에서 기인한 전완 메커니즘과 자유도 해석)

  • Lee, Geon;Lee, Ho
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.209-215
    • /
    • 2022
  • In this paper, a forearm Mechanism design inspired by ligamentous structure of the human body is proposed. The proposed mechanism consists of four rigid bodies and fourteen wires without any mechanical joints. Actually, the mechanism is based on the concept of the tensegrity structure. Therefore, the proposed mechanism has inherently compliant characteristics due to the flexibility of the wires composing the structure. Rigid bodies and wires of the mechanism mimic bones and major ligaments in the forearm of the human. The proposed mechanism is classified as one of the interconnected hybrid flexure systems. The analysis method of the degree of freedom (DOF) of the proposed mechanism is also introduced through analyzing technique of the interconnected hybrid flexure systems, in this paper. Ultimately, the proposed mechanism, whose structure is complicated with rigid bodies and wires, mathematically drives that it has 3-DOFs.

Design and Simulation of Small Bio-Inspired Jumping Robot (생체모방 소형 점핑로봇의 설계 및 시뮬레이션)

  • Ho, Thanhtam;Choi, Sung-Hac;Lee, Sang-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1145-1151
    • /
    • 2010
  • In this paper, we discuss the design and simulation of a jumping-robot mechanism that is actuated by SMA (shape memory alloy) wires. We propose a jumping-robot mechanism; the structure of the robot is inspired by the musculoskeletal system of vertebrates, including humans. Each robot leg consists of three parts (a thigh, shank, and foot) and three kinds of muscles (gluteus maximus, rectus femoris, and gastrocnemius). The jumping capability of the robot model was tested by means of computer simulations, and it was found that the robot can jump to about four times its own height. This robot model was also compared with another model with a simpler structure, and the performance of the former, which was based on the biomimetic design, was 3.3 times better than that of the latter in terms of the jumping height. The simulation results also verified that SMA wires can be suitable actuators for small jumping robots.