DOI QR코드

DOI QR Code

Design and Simulation of Small Bio-Inspired Jumping Robot

생체모방 소형 점핑로봇의 설계 및 시뮬레이션

  • Ho, Thanhtam (Dept. of Mechanical Design and Production Engineering, Konkuk Univ.) ;
  • Choi, Sung-Hac (Dept. of Mechanical Design and Production Engineering, Konkuk Univ.) ;
  • Lee, Sang-Yoon (Dept. of Mechanical Design and Production Engineering, Konkuk Univ.)
  • 호탐탄 (건국대학교 기계설계학과) ;
  • 최성학 (건국대학교 기계설계학과) ;
  • 이상윤 (건국대학교 기계설계학과)
  • Received : 2010.01.08
  • Accepted : 2010.06.18
  • Published : 2010.09.01

Abstract

In this paper, we discuss the design and simulation of a jumping-robot mechanism that is actuated by SMA (shape memory alloy) wires. We propose a jumping-robot mechanism; the structure of the robot is inspired by the musculoskeletal system of vertebrates, including humans. Each robot leg consists of three parts (a thigh, shank, and foot) and three kinds of muscles (gluteus maximus, rectus femoris, and gastrocnemius). The jumping capability of the robot model was tested by means of computer simulations, and it was found that the robot can jump to about four times its own height. This robot model was also compared with another model with a simpler structure, and the performance of the former, which was based on the biomimetic design, was 3.3 times better than that of the latter in terms of the jumping height. The simulation results also verified that SMA wires can be suitable actuators for small jumping robots.

본 논문은 형상기억합금 와이어에 의해 구동되는 점핑로봇에 대한 연구로서 기구의 설계와 컴퓨터 시뮬레이션을 포함하고 있다. 인간과 같은 척추동물 하지 근골격계의 구조와 기능을 모방한 구조의 점핑 기구를 설계하였다. 점핑 기구의 각 다리는 대퇴부, 정강이, 발의 세 부분으로 구성되고, 점핑에 필수적인 단일관절근육인 대둔근, 양관절근육인 대퇴직근과 비복근을 포함하는 구조이다. 각 근육을 형상기억합금 와이어로 대체한 컴퓨터 모델로 시뮬레이션한 결과, 로봇의 최대 점핑 높이가 로봇 신장의 약 4 배임을 확인하였다. 또한 구조가 보다 단순화된 로봇 모델과 점핑 성능을 비교하였고, 그 결과 근골격계를 모방한 모델이 점핑 높이 면에서 3.3 배 우수한 것으로 나타났다. 이러한 컴퓨터 시뮬레이션을 통하여 형상기억합금이 소형 점핑로봇의 작동기로 사용하기에 적합함을 확인하였다.

Keywords

References

  1. Wikipedia, “Kangaroo,” http://en.wikipedia.org/wiki/Kangaroo.
  2. Shin, Y. H., Ryu, K. U., Kim, T. J., Lee, J. H. and Choi, J. Y., 2007, “Mechanism and Control of a Jumping Robot,” International Conference on Control, Automation and System.
  3. Tsukagoshi, H., Sasaki, M., Kitagawa, A. and Tanaka, T., 2005, “Jumping Robot for Rescue Operation with Excellent Traverse Ability,” International Conference on Advanced Robotics.
  4. Scarfogliero, U., Stefanini, C. and Dario, P., 2007, “Design and Development of the Long-Jumping "Grillo" Mini Robot,” IEEE International Conference on Robotics and Automation.
  5. Scarfogliero, U., Stefanini, C. and Dario, P., 2009, “The Use of Compliant Joints and Elastic Energy Storage in Bio-Inspired Legged Robots,” Mechanism and Machine Theory, Vol. 44, No. 3, pp. 580-590. https://doi.org/10.1016/j.mechmachtheory.2008.08.010
  6. Niiyama, R., Nagakubo, A. and Kuniyoshi, Y., 2007, “Mowgli: A Bipedal Jumping and Landing Robot with an Artificial Musculoskeletal System,” IEEE International Conference on Robotics and Automation.
  7. Oshima, T., Momose, N., Koyanagi, K., Matsuno, T. and Fujikawa, T., 2007, “Jumping Mechanism Imitating Vertebrate by the Mechanical Function of Bi-articular Muscle,” International Conference on Mechatronics and Automation.
  8. Kim, B., Lee, M. G., Lee, Y. P., Kim, Y. and Lee, G., 2006, “An Earthworm-Like Micro Robot Using Shape Memory Alloy Actuator,” Sensors and Actuators A, Vol. 125, pp. 429-437. https://doi.org/10.1016/j.sna.2005.05.004
  9. Hoover, A. M., Steltz, E. and Fearing, R. S., 2008, “RoACH: An Autonomous 2.4g Crawling Hexapod Robot,” IEEE International Conference on Intelligent Robots and Systems, pp. 26-33.
  10. Berry, M. and Garcia E., 2008, “Bio-Inspired Shape Memory Alloy Actuated Hexapod Robot,” Proc. SPIE, Vol. 6928, 69281M.
  11. Ho, T. and Lee, S., 2009, “Piezoelectrically Actuated Biomimetic Self-Contained Quadruped Bounding Robot,” Journal of Bionic Engineering, Vol. 6, No. 1, pp. 29-36. https://doi.org/10.1016/S1672-6529(08)60099-2
  12. Spagele, T., Kistner, A. and Gollhofer, A., 1999, “Modelling, Simulation and Optimisation of a Human Vertical Jump,” Journal of Biomechanics, Vol.32, No. 5, pp. 521-530. https://doi.org/10.1016/S0021-9290(98)00145-6
  13. Guyton, A. and Hall, J., 2005, Textbook of Medical Physiology, Elsevier Saunders, Philadelphia, p. 1104.
  14. Graaff, V. D., 2001, Human Anatomy, McGraw-Hill, New York, p. 840.
  15. Mader, S. S., 2004, Understanding Human Anatomy and Physiology, McGraw-Hill, New York, p. 444.
  16. Langeneckert, M., “The Human Machine: Art and Anatomy,” http://shutupanddrawblogspotcom.blogspot. com.
  17. Pandy, M. G., Zajac, F. E., Sim, E. and Levine, W. S., 1990, “An Optimal Control Model for Maximum Height Human Jumping,” Journal of Biomechanics, Vol. 23, No. 12, pp. 1185-1198. https://doi.org/10.1016/0021-9290(90)90376-E
  18. Bobbert, M. F. and van Ingen Schenau, G. J. , 1988, “Coordination in Vertical Jumping,” Journal of Biomechanics, Vol. 21, pp. 249-262. https://doi.org/10.1016/0021-9290(88)90175-3
  19. Lutz, G. J. and Rome, L. C., 1996, “Muscle Function During Jumping in Frogs. II. Mechanical Properties of Muscle: Implications for System Design,” Am J Physiol Cell Physiol, Vol. 271, No. 2, pp. C571-578. https://doi.org/10.1152/ajpcell.1996.271.2.C571