• Title/Summary/Keyword: bio-fertilizer

Search Result 386, Processing Time 0.024 seconds

Present Status and Future Prospect of Environment Agriculture in Daeho Reclain ed Saline Area (대호간척지의 환경농업 추진현황과 발전방향)

  • Chae Je-Cheon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2001.09a
    • /
    • pp.72-90
    • /
    • 2001
  • Environment agriculture carried out from 1999 in Daeho reclaimed saline area, located in central east cost of Choongnam Korea, resulted in dramatic reduction of amount of nitrogen fertilizer and application times and amount of pesticides. The ecological status of Daeho reclaimed saline area was considered to still very sound from the results of ecological survey on flora and fauna. However, it was desirable to adapt precision agriculture for production of high eating quality of rice and preservation of Daeho ecosystem. Especially, precise application of nitrogen and phosphorus fertilizer was recommendable for prevention of water pollution in environment rice cultivation by duck or mud snail or crab. The bioefficacy of Scirpus maritimus and Echinochloa crus-galli in paddy field of environment rice cultivation by duck or mud snail or crab in Daeho reclaimed saline area was revealed very low. Therefor, it was concluded that the pre-measures of reduction of natural weed population were necessary for successful environment agriculture. The most desirable and ideal environmentally sound agriculture in Daeho reclaimed saline area was performance of crop rotation, introduction of legume crops and green manure crops, and also, simultaneous management of crop production and animal husbandry for smooth flow of energy cycle within the closed Daeho ecosystem.

  • PDF

Determination of Initial Denitrification in Intact Cores under Various Freshwater Wetland Types

  • Seo, Dong-Cheol;Delaune, R.D.;Lane, Robert R.;Day, John W.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.20-24
    • /
    • 2012
  • Denitrification rate was determined for various freshwater wetland types in the Mississippi River Coastal delta plain. Site 1 and 4 were collected from forested-tupelo dominated wetland, and site 2 and 3 were from floating emergent marsh. The maximum $N_2O$ emission was $7.47mg\;N\;m^{-2}$ for site 1 at day 6 after the addition of nitrate, $6.96mg\;N\;m^{-2}$ for site 2 at day 4, $6.63mg\;N\;m^{-2}$ for site 3 at day 3, and $9.64mg\;N\;m^{-2}$ for site 4 at day 4. The denitrification rate was determined using the acetylene inhibition method $1.24mg\;N\;m^{-2}d^{-1}$ for site 1, $1.93mg\;N\;m^{-2}d^{-1}$ for site 2, $2.24mg\;N\;m^{-2}d^{-1}$ for site 3, and $2.78mg\;N\;m^{-2}d^{-1}$ for site 4. The maximum denitrification rate was in the order of site 4 > site 3 > site 2 > site 1.

Agricultural Status and Soils in Korea

  • Ha, Sang-Keun;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.118-126
    • /
    • 2012
  • Korea's agriculture had many inherent problems. Korea is a mountainous country with only 22 percent farmland and less rainfall than most other neighboring rice-growing countries. A major land reform in the late 1940s and early 1950s spread ownership of land to the rural peasantry. Individual holdings, however, were too small or too spread out to provide families with much chance to produce a significant quantity of food. The enormous growth of urban areas led to a rapid decrease of available farmland, while at the same time population increases and bigger incomes meant that the demand for food greatly outstripped supply. The result of these developments was that by the late 1980s roughly half of Korea's needs, mainly wheat and animal feed corn, was imported. Korea's agriculture is facing a new round of difficulties from the inevitable process of market opening. Therefore, we have reviewed the agricultural status and soils in Korea how we can meet the coming issues with respect to production and prospect based on the government documents and articles published on the journals.

Use of Terminal Restriction Length Polymorphism (T-RFLP) Analysis to Evaluate Uncultivable Microbial Community Structure of Soil

  • Chauhan, Puneet Singh;Shagol, Charlotte C.;Yim, Woo-Jong;Tipayno, Sherlyn C.;Kim, Chang-Gi;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.127-145
    • /
    • 2011
  • Various environmental ecosystems are valuable sources for microbial ecology studies, and their analyses using recently developed molecular ecological approaches have drawn significant attention within the scientific community. Changes in the microbial community structures due to various anthropogenic activities can be evaluated by various culture-independent methods e.g. ARISA, DGGE, SSCP, T-RFLP, clone library, pyrosequencing, etc. Direct amplification of total community DNA and amplification of most conserved region (16S rRNA) are common initial steps, followed by either fingerprinting or sequencing analysis. Fingerprinting methods are relatively quicker than sequencing analysis in evaluating the changes in the microbial community. Being an efficient, sensitive and time- and cost effective method, T-RFLP is regularly used by many researchers to access the microbial diversity. Among various fingerprinting methods T-RFLP became an important tool in studying the microbial community structure because of its sensitivity and reproducibility. In this present review, we will discuss the important developments in T-RFLP methodology to distinguish the total microbial diversity and community composition in the various ecosystems.

Exploring the Potential of Bacteria-Assisted Phytoremediation of Arsenic-Contaminated Soils

  • Shagol, Charlotte C.;Chauhan, Puneet S.;Kim, Ki-Yoon;Lee, Sun-Mi;Chung, Jong-Bae;Park, Kee-Woong;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.58-66
    • /
    • 2011
  • Arsenic pollution is a serious global concern which affects all life forms. Being a toxic metalloid, the continued search for appropriate technologies for its remediation is needed. Phytoremediation, the use of green plants, is not only a low cost but also an environmentally friendly approach for metal uptake and stabilization. However, its application is limited by slow plant growth which is further aggravated by the phytotoxic effect of the pollutant. Attempts to address these constraints were done by exploiting plant-microbe interactions which offers more advantages for phytoremediation. Several bacterial mechanisms that can increase the efficiency of phytoremediation of As are nitrogen fixation, phosphate solubilization, siderophore production, ACC deaminase activity and growth regulator production. Many have been reported for other metals, but few for arsenic. This mini-review attempts to present what has been done so far in exploring plants and their rhizosphere microbiota and some genetic manipulations to increase the efficiency of arsenic soil phytoremediation.

Effect of Microbial Fertilizers on Yield of Young Radish(Raphanus sativus L.)

  • 김경제;김수정
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.3
    • /
    • pp.103-117
    • /
    • 2001
  • This study was inducted to investigate the effects of microbial fertilizers on the fields of young radish(Raphanus sativus L.), chemical components of plant and soil, and the microbial floras. Six microbial fertilizers, MPK+Husk+Palma, Husk+Palma, MPK+Compost, Compost, BIO Livestock Clean System(BLCS) cattle dropping, and Tomi were used. The yields of young radish were increased in six microbial fertilizer treatments. The fresh matter weight, the number of leaves, and the dry matter weight of young radish in BLCS cattle dropping treatment, the leaf length in MPK+Husk+Palma treatment, the sugar content in Husk+Palma treatment, arid the leaf width in Tomi treatment showed the highest amount, respectively. The effects of microbial fertilizers on chemical characteristics of young radish and soil were examined. Phosphoric acid amount of young radish in Tomi treatment was much higher than other treatments. Potassium amount of young radish showed high significance in all microbial fertilizer treatments compared with control, and shoved the highest in Compost treatment . Two components, phosphoric acid find potassium, in soil inoculated by microbial fertilizers showed significant. Phosphoric acid in the Tomi treatment and Potassium in Husk+Palma treatment were increased. The microorganic populations in soil inoculated with microbial fertilizers were examined. While the number of Bacillus in ceil was increased in MPK+Husk+Palma treatment, the numbers of total bacteria, actinomycetes, and fungi were increased in Tomi treatment.

  • PDF

Studies on the Selection of Microorganism for Food Wastes and Optimization of Fermentation Process (음식물찌꺼기 소멸효율 재고를 위한 발효균 및 발효 공정 최적화 연구)

  • Kim, Young-Kwon;Hong, Myung-Pyo;Kim, Myung-Jin;Hong, Suk-Il;Park, Myung-Suk;Kim, Jong-Suk;Chang, Ho-Geun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.2
    • /
    • pp.95-112
    • /
    • 1998
  • For the effective disposal of organic food wastes, we seleted 4 strains of microorganism from 186 microbial candidate via enzyme activity test, salt tolerance, food decomposition rate, stability and safety of strains. The identity of these 4 strains are as follows : Fungi is Rhizopus sp., yeasts are Galactomyces sp., Pichia sp. and Hyphopichia sp., In the 50L fermenter scale, we tested various fermenting factor for the optimization of conditions of food waste decomposition using 4 selected strains. The optimum fomenting conditions were as follows : BIO-CHIP Volume 25-30 L, BIO CHIP size 2.0-6.0mm, air flow 200-280L/min, mixing intensity 2-4rpm, temperature $30-45^{\circ}C$. In these fermenting conditions, the efficiency of decomposition(rate of weight loss of food wastes) were 93%. Also the quality of fermenting output were assayed at the basis of fertilizer, and the results were as good as general compost.

  • PDF

Characteristics of food waste: water and salinity contents

  • Lee, Jae-Han;Kang, Yoon-Gu;Luyima, Deogratius;Park, Seong-Jin;Oh, Taek-Keun;Lee, Chang Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.375-380
    • /
    • 2020
  • The high intrinsic water content and salinity of food waste prevent a smooth composting process and consequently cause social, economic and environmental problems. In this study, we investigated the distribution of the water content and salinity in food wastes to obtain useful primary data to ensure adequate and quality recycling. A total of 300 food waste (FW) samples were collected from residential apartments (home generated FW), a wide range of restaurants, i.e., restaurant generated FW that included Korean, Chinese, Japanese and western FWs, and several places that included food waste processing facilities (dehydrated FW cakes). The collected food wastes were oven dried for 48 hours at 80℃ after which the water and salinity contents were analyzed. The results show that the average water content of the FWs was 72.45 ± 10.51%, and the average salinity content was 2.03 ± 0.57%. Furthermore, the salinity of the collected FWs was characterized by where the FW was generated. By location, the salinity concentration of home generated FW was 2.30% while western food had the lowest salinity concentration of 1.18%. However, dehydrated cakes had the highest salinity concentration of 2.84%. Especially, the distribution of the salinity content in food wastes can form the basis for improving the compost quality in food waste recycling.

Simulation of Water Movement in Rockwool Slab as Soil-less Cultivation Using HYDRUS (HYDRUS를 이용한 작물재배용 암면배지에서의 수분 이동 시뮬레이션)

  • Dong-Hyun Kim;Jong-Soon Kim;Soon-Hong Kwon;Jong-Min Park;Won-Sik Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.153-162
    • /
    • 2023
  • It is important to determine water movement at the growing substrate used in soil-less cultivation for better management of water supply. Numerical simulation is a fast and versatile approach to evaluate highly accurate water distribution. The objective of this study is to simulate the water movement in rockwool as a soil-less medium using HYDRUS-2D. HYDRUS-2D was used to simulate the spatial and temporal water movement in two types of rockwool slabs (Floriculture (FL), high density; Expert (EP), low density). The simulation was performed at two pulse conditions: 10 min ON and 50 min OFF (case A), 20 min ON and 40 min OFF (case B). The total irrigation amounts were the same at both cases. In case A, during the irrigation ON, the water contents at FL increased 1.93-fold faster than the values at EP. Whereas, during the irrigation OFF, the decreasing rate of water contents at FL was almost the same as one at EP. At case B, these values were not changed much from case A. However, the duration of optimum water content (50% - 80%) was 15.0 min and 23.5 min at case A and case B, respectively. Thus, FL and 20 min ON and 40 min OFF (case B) could supply water to rockwool much faster and longer than EP. Once qualitatively validated, this simulation of water movement in rockwool could be used to design an effective optimum irrigation method for vegetables.

Evaluation of NH3 emissions in accordance with the pH of biochar

  • Yun-Gu, Kang;Jae-Han, Lee;Jin-Hyuk, Chun;Yeo-Uk, Yun;Taek-Keun, Oh;Jwa-Kyung, Sung
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.787-796
    • /
    • 2021
  • Nitrogen (N) is the most important element during the process of plant growth, and the quality of crops varies depending on the amount of nitrogen present. Most of the nitrogen is used for plant growth, but approximately 10 - 20% of Nitrogen is carried away by the wind in the form of NH3. This volatilized NH3 reacts with various oxides in the atmosphere to generate secondary particulate matter. To address this, the present study attempts to reduce NH3 occurring in the soil using biochar at a specific pH. Biochar was used as a treatment with 1% (w·w-1) of the soil, and urea was applied at different levels of 160, 320, and 640 kg·N·ha-1. NH3 generated in the soil was collected using a dynamic column and analyzed using the indophenol blue method. NH3 showed the maximum emission within 4 - 7 days after the fertilizer treatment, decreasing sharply afterward. NH3 emission levels were reduced with the biochar treatment in all cases. Among them, the best reduction efficiency was found to be approximately 25% for the 320 kg·ha-1 + pH 6.7 biochar treatment. Consequently, in order to reduce the amount of NH3 generated in the soil, it is most effective to use pH 6.7 biochar and a standard amount (320 kg·N·ha-1) of urea.