• Title/Summary/Keyword: bio-composites

Search Result 202, Processing Time 0.02 seconds

Thermal behavior of Flame Retardant Filled PLA-WF Bio-Composites

  • Choi, Seung-Woo;Lee, Byoung-Ho;Kim, Hyun-Joong;Kim, Hee-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.155-163
    • /
    • 2009
  • This study examined the thermal stability of PLA-WF bio-composites. Wood flour (WF)-filled PLA bio-composites were reinforced with the flame retardants, Melamine pyrophosphate (MPP), resorcinol bis (diphenyl phosphate) (RDP) and zinc borate (ZB). The flame retardant was compounded with PLA and natural biodegradable filler. The thermal properties of the biodegradable polymer and bio-composites reinforced with the flame retardant were measured and analyzed by DSC, DMA and TGA. The results showed that the flame retardant-reinforced biodegradable bio-composite exhibited improved thermal properties.

Physical Properties of Agro-Flour Filled Aliphatic Thermoplastic Polyester Bio-Composites

  • Eom, Young Geun;Kim, Hee Soo;Yang, Han Seung;Kim, Hyun Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.71-78
    • /
    • 2004
  • The purpose of this study was to investigate the water absorption and thickness swelling of biocomposites at room temperature. These properties of bio-composites mainly depend on the ability of the agro-flour to absorb water through hydrogen bonding between water and the hydroxyl groups of the holocellulose and lignin in the cell wall. As the content of agro-flour increased, the water absorption and thickness swelling of the bio-composites increased. The effects of agro-flour content and rice husk flour (RHF) particle size on the water absorption and thickness swelling of the bio-composites were evaluated. In general, wood-based materials showed significantly higher water absorption and thickness swelling than the bio-composites. This might be attributed to the ability of the polybutylene succinate (PBS) hydrophobic polymer to prohibit the water absorption and thickness swelling of the bio-composites, Therefore, the use of agro-flour filled PBS bio-composites, which exhibit improved dimensional stability in comparison with wood-based materials, is recommended.

Processability of Bio-composites Applied Polyolefin to Recycled Fiberboard Flour (Polyolefin계 고분자에 섬유판 가공 부산물을 적용한 환경 친화형 바이오복합재의 가공성)

  • Choi, Seung-Woo;Kim, Hee-Soo;Lee, Byoung-Ho;Kim, Hyun-Joong;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.55-62
    • /
    • 2005
  • This study was conducted to evaluate the application of a bio-composite made by the addition recycled fiber board flour as filler. Recycled fiber board (high density fiber board, HDF) flour was added to polyolefin polymer low density polyethylene (LDPE) and polypropylene (PP) for the preparation of bio-composite materials. The mechanical properties and processability of the recycled HDF flour filled LDPE and recycled HDF flour filled PP bio-composites were then measured and compared to those of wood flour (WF) and rice-husk flour (RHF) filled LDPE and PP bio-composites, respectively. The tensile and impact strengths of the recycled HDF flour filled LDPE and PP bio-composites had similar mechanical properties to those of the WF and RHF filled LDPE and PP bio-composites. To measure the processability, torques of the bio-composites were also measured. The torques of the HDF flour filled LDPE and PP bio-composites were lower than those of the WF and RHF filled polyolefin (PP and LDPE) bio-composites with a filler loading of 30 wt.%. This result showed definite processability, which was not related with the distribution of the particle size of the material added. The recycled fiber board flour filled bio-composites showed applicability as substitutes for the bio-composites currently used in the bio-composites industry.

Formaldehyde and TVOC Emission of Bio-Composites with Attached Fancy Veneer

  • Lee, Byoung-Ho;Kim, Hee-Soo;Kim, Ki-Wook;Lee, Se-Na;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.46-55
    • /
    • 2008
  • This study assesses the formaldehyde and TVOC emissions from bio-composites with attached fancy veneer manufactured using wood flour and polypropylene (PP) measured using the Field and Laboratory Emission Cell (FLEC) method and 20 L small chamber method. To determine and compare the effects of the adhesive, samples were prepared with different manufacturing methods. In the FLEC result, the formaldehyde emission level of the bio-composites with attached veneer by hot-press was the lowest than pure bio-composite and bio-composite attached veneer using adhesive. The TVOC emission levels are similar to the formaldehyde emission. The TVOC emission level is very low in all of the samples except fancy veneer that is attached with bio-composites using adhesive. The TVOC emission varies depending on how attaching fancy veneer. The results of the 20 L small chamber method were very similar to those obtained with the FLEC, but the correlation was not perfect. However, the FLEC method requires a shorter time than the 20 L small chamber method to measure the formaldehyde and TVOC emissions. The internal bonding strength exceeded the minimum value of $0.4N/mm^2$ specified by the KS standard. All of the bio-composites with attached veneer satisfied the KS standard.

Bio-based Polypropylene Composites: Plausible Sustainable Alternative to Plastics in Automotive Applications

  • Ji Won Kwon;Sarbaranjan Paria;In Soo Han;Hyeok Jee;Sung Hwa Park;Sang Hwan Choi;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.59 no.2
    • /
    • pp.51-63
    • /
    • 2024
  • Polypropylene (PP) is a commodity plastic that is widely used owing to its cost-effectiveness, lightweight nature, easy processability, and outstanding chemical and thermomechanical characteristics. However, the imperative to address energy and environmental crises has spurred global initiatives toward a circular economy, necessitating sustainable alternatives to traditional fossil-fuel-derived plastics. In this study, we conducted a series of comparative investigations of bio-based polypropylene (bio-PP) blends with current PP of the same and different grades. An extrusion-based processing methodology was employed for the bio-PP composites. Talc was used as an active filler for the preparation of the composites. A comparative analysis with the current petroleum-based PP indicated that the thermal properties and tensile characteristics of the bio-PP blends and composites remained largely unaltered, signifying the feasibility of bio-PP as a potential substitute for the current PP. To achieve a higher Young's modulus, elongation at break (EAB), and melt flow index (MFI), we prepared different composites of PP of different grades and bio-PP with varying talc contents. Interestingly, at higher biomass contents, the composites exhibited higher MFI and EAB values with comparable Young's moduli. Notably, the impact strengths of the composites with various biomass and talc contents remained unaltered. In-depth investigations through surface analysis confirmed the uniform dispersion of talc within the composite matrix. Furthermore, the moldability of the bio-PP composites was substantiated by comprehensive rheological property assessments encompassing shear rate and shear viscosity. Thus, from these outcomes, the fabricated bio-PP-based composites could be an alternative to petroleum-based PP composites for sustainable automobile applications.

Performance Evaluation of Bio-Composites Composed of Acetylated Kenaf Fibers and Poly(lactic acid) (PLA) (아세틸화 케나프 섬유와 폴리락트산으로 구성된 바이오복합재료의 물성 평가)

  • Chung, T.J.;Lee, B.H.;Lee, H.J.;Kwon, H.J.;Jang, W.B.;Kim, H.J.;Eom, Y.G.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.195-203
    • /
    • 2011
  • Eco-friendly materials or bio-composites were made with poly(lactic acid) (PLA) as matrix polymer and kenaf fibers as filler. Also, acetylated kenaf fibers and compatibilizer were adopted in order to improve the interfacial adhesion between fiber and polymer. In this study, the effect of chemical modification and compatibilizer on the mechanical-viscoelastic and morphology properties of the bio-composites was discussed. The hydrophobic fibers by acetylation were known to show better interfacial bonding with the matrix polymer and resulted in improved performance and morphology. Viscoelastic property and glass transition temperature, however, were not nearly enhanced.

Thermal Properties of Corn-Starch Filled Biodegradable Polymer Bio-Composites (옥수수 전분을 충전제로 첨가한 생분해성 고분자 복합재료의 열적성질)

  • Kim, Hee-Soo;Yang, Han-Seung;Kim, Hyun-Joong;Lee, Young-Kyu;Park, Hee-Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.29-38
    • /
    • 2004
  • In this study, we investigated the thermal properties of corn-starch filled polybutylene succinate-adipate (PBS-AD) bio-composites. Thermal analysis (TA) is used to describe the analytical method for measuring the chemical property and weight loss of composite materials as a function of temperature. The thermal stability of corn-starch was lower than that of pure PBS-AD. As corn-starch loading increased, the thermal stability and degradation temperature of the bio-composites decreased and the ash content increased. It can be seen that the degree of compatibility and interfacial adhesion of the bio-composites decreased because of the increasing mixing ratio of the corn-starch. As the content of corn-starch increased, there was no significant change in the glass transition temperature (Tg) and the melting temperature (Tm) for the bio-composites. The storage modulus (E') and loss modulus (E") of the corn-starch flour filled PBS-AD bio-composites were higher than those of PBS-AD, because of the incorporation of corn-starch increased the stiffness of the bio-composites. At higher temperatures, the decreased storage modulus (E') of bio-composites was due to the increased polymer chain mobility of the matrix polymer. From these results, we can expect that corn-starch has potential as a reinforcing filler for bio-composites. Furthermore, we recommend using a coupling agent to improve the interfacial adhesion between corn-starch and biodegradable polymer.

Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.299-306
    • /
    • 2019
  • The natural fibre composites are termed as bio-composites. They have shown a promising replacement to the current carbon/glass fibre reinforced composites as environmental friendly materials in specific applications. Natural fibre reinforced composites are potential materials for various engineering applications in automobile, railways, building and Aerospace industry. The natural fibre selected to fabricate the composite material is plant-based fibre e.g., sisal fibre. Sisal fibre is a suitable reinforcement for use in composites on account of its low density, high specific strength, and high hardness. Epoxy is a thermosetting polymer which is used as a resin in natural fibre reinforced composites. Hand lay-up technique was used to fabricate the composites by reinforcing sisal fibres into the epoxy matrix. Composites were prepared with the unidirectional alignment of sisal fibres. Test specimens with different fibre orientations were prepared. The fabricated composites were tested for mechanical properties. Impact test, tensile test, flexural test, hardness test, compression test, and thermal test of composites had been conducted to assess its suitability in industrial applications. Scanning electron microscopy (SEM) test revealed the microstructural information of the fractured surface of composites.