DOI QR코드

DOI QR Code

Bio-based Polypropylene Composites: Plausible Sustainable Alternative to Plastics in Automotive Applications

  • Ji Won Kwon (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University) ;
  • Sarbaranjan Paria (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University) ;
  • In Soo Han (Interior & Exterior Materials Development Team, Hyundai Motor Company) ;
  • Hyeok Jee (Epolytech Co., Ltd) ;
  • Sung Hwa Park (Epolytech Co., Ltd) ;
  • Sang Hwan Choi (Epolytech Co., Ltd) ;
  • Jeong Seok Oh (Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University)
  • Received : 2024.03.28
  • Accepted : 2024.06.28
  • Published : 2024.06.30

Abstract

Polypropylene (PP) is a commodity plastic that is widely used owing to its cost-effectiveness, lightweight nature, easy processability, and outstanding chemical and thermomechanical characteristics. However, the imperative to address energy and environmental crises has spurred global initiatives toward a circular economy, necessitating sustainable alternatives to traditional fossil-fuel-derived plastics. In this study, we conducted a series of comparative investigations of bio-based polypropylene (bio-PP) blends with current PP of the same and different grades. An extrusion-based processing methodology was employed for the bio-PP composites. Talc was used as an active filler for the preparation of the composites. A comparative analysis with the current petroleum-based PP indicated that the thermal properties and tensile characteristics of the bio-PP blends and composites remained largely unaltered, signifying the feasibility of bio-PP as a potential substitute for the current PP. To achieve a higher Young's modulus, elongation at break (EAB), and melt flow index (MFI), we prepared different composites of PP of different grades and bio-PP with varying talc contents. Interestingly, at higher biomass contents, the composites exhibited higher MFI and EAB values with comparable Young's moduli. Notably, the impact strengths of the composites with various biomass and talc contents remained unaltered. In-depth investigations through surface analysis confirmed the uniform dispersion of talc within the composite matrix. Furthermore, the moldability of the bio-PP composites was substantiated by comprehensive rheological property assessments encompassing shear rate and shear viscosity. Thus, from these outcomes, the fabricated bio-PP-based composites could be an alternative to petroleum-based PP composites for sustainable automobile applications.

Keywords

Acknowledgement

This work has been carried out in the Regional Specialized Industry Development Program through the Korea Technology & Information Promotion Agency for SMEs (TIPA), funded by the Ministry of SMEs and Startups+(R&D) (S3262003).

References

  1. G. Yilan, M. Cordella, and P. Morone, "Evaluating and managing the sustainability performance of investments green and sustainable chemistry: Development and application of an approach to assess bio-based and biodegradable plastics", Curr. Res. Green Sustain. Chem., 6, 100353 (2023).
  2. G. Atiwesh, A. Mikhael, C. C. Parrish, J. Banoub, and T. A. T. Le, "Environmental impact of bioplastic use: A review", Heliyon., 7, e07918 (2021).
  3. M. Niaounakis, "Biopolymers: Processing and Products", Amsterdam (2014).
  4. M. Gill, "BIOPLASTIC: A BETER ALTERNATIVE TO PLASTICS", Int. J. Appl. Nat. Soc. Sci., 2, 115 (2014).
  5. N. Strumberger, A. Gospocic, and C. Bartulic, "POLYMERIC MATERIALS IN AUTOMOBILES", Promet-Zagreb., 17, 149 (2005).
  6. M. Kutz, "Applied Plastics Engineering Handbook: Processing and Materias", Elsevier (2017).
  7. O. Akampumuza, P. M. Wambua, A. Ahmed, W. Li, and X. H. Qin, "Review of the Applications of Biocomposites in the Automotive Industry", Polym. Compos., 38, 2553 (2016).
  8. A. M. Cunha, A. R. Campos, C. Cristovao, C. Vila, V. Santos, and J. C. Parajo, "Sustainable materials in automotive applications", Plast. Rubber. Compos., 35, 233 (2016).
  9. A. Bouzouita, D. Notta-Cuvier, J. M. Raquez, F. Lauro, and P. Dubois, "Poly(lactic acid)-Based Materials for Automotive Applications", Adv. Polym. Sci., 38, 177 (2017).
  10. R. A. Ilyas, S. M. Sapuan, M. M. Harussani, M. Y. A. Y. Hakimi, M. Z. M. Haziq, M. S. N. Atikah, M. R. M. Asyraf, M. R. Ishak, M. R. Razman, N. M. Nurazzi, M. N. F. Norrrahim, H. Abral, and M. Asrofi, "Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications", Polym., 13, 1326 (2021).
  11. S. Palaniyappan and N. K. Sivakumar, "Sustainable approach to the revalorization of crab shell waste in polymeric filament extrusion for 3D printing applications", Biomass. Convers. Biorefinery, 14 (2023).
  12. K. Vishal, N. K. Rajkumar, P. Sabarinathan, and V. Dhinakaran, "Mechanical and Wear Characteristics Investigation on 3D Printed Silicon Filled Poly(Lactic Acid) Biopolymer Composite Fabricated by Fused Deposition Modeling", Silicon., 14, 9379 (2022).
  13. V. Siracusa and I. Blanco, "Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications", Polym., 12, 1641 (2020).
  14. N. Schiavone, V. Verney, and H. Askanian, "High-Density Bio-PE and Pozzolan Based Composites: Formulation and Prototype Design for Control of Low Water Flow", Polym., 13, 1908 2021).
  15. Q. Tarres and M. Ardanuy, "Evolution of Interfacial Shear Strength and Mean Intrinsic Single Strength in Biobased Composites from Bio-Polyethylene and Thermo-Mechanical Pulp-Corn Stover Fibers", Polym., 12, 1308 (2020).
  16. S. Moritomi, T. Watanabe, and S. Kanzaki, "Compounds for Automotive Applications", Sumitomo. Chem. Co. Ltd., 1 (2010).
  17. R. Mulhaupt, "Green Polymer Chemistry and Bio-based Plastics: Dreams and Reality", Macromol. Chem. Phys., 214, 159 (2013).
  18. Y. W. Leong, Z. A. M. Ishak, and A. Ariffin, "Mechanical and Thermal Properties of Talc and Calcium Carbonate Filled Polypropylene Hybrid Composites", J. Appl. Polym. Sci., 91, 3327 (2004).
  19. Jr. L. Lapick, P. Jindrova, B. Lapcikova, R. Tamblyn, R. Greenwood, and N. Rowson, "Effect of the Talc Filler Content on the Mechanical Properties of Polypropylene Composites", J. Appl. Polym. Sci., 110, 2742 (2008).
  20. M. Denac, V. Musil, I. Smit, and F. Ranogajec, "Effects of talc and gamma irradiation on mechanical properties and morphology of isotactic polypropylene/talc composites", Polym. Degrad. Stab., 82, 263 (2003).
  21. K. Wang, N. Bahlouli, F. Addiego, S. Ahzi, Y. Remond, D. Ruch, and R. Muller, "Effect of talc content on the degradation of re-extruded polypropylene/talc composties", Polym. Degrad. Stab., 98, 1275 (2013).
  22. F. Qin, M. Wand, Y. Hao, and S. Guo, "The effect of talc orientation and transcrystallization on mechanical properties and thermal stability of the polypropylene/talc compopsites", Compos. Part. A. Appl. Sci. Manuf., 58, 7 (2014).
  23. S. Nekhlaoui, H. Essabir, D. kunal, M. Sonakshi, M. O. Bensalah, R. Bouhfid, and A. Qaiss, "Comparative Study for the Talc and Two Kinds of Moroccan Clay as Reinforcements in Polypropylene-SEBS-g-MA Matrix", Polym. Compos., 36, 675 (2015).
  24. E. B. Arikan and H. D. Ozsoy, "A Review: Investigation of Bioplastics", J. Civ. Eng. Arch., 9, 188 (2015).
  25. K. Formela, L. Zedler, A. Hejna, and A. Tercjak, "Reactive extrusion of bio-based polymer blends and composites - Current trends and future developments", eXPRESS. Polym. Lett., 12, 24 (2018).
  26. M. B. Abu Bakar, Y. W. Leong, A. Ariffin, and Z. A. Mohd Ishak, "Mechanical, Flow, and Morphological Properties of Talc- and Kaolin-Filled Polypropylene Hybrid Composites", J. Appl. Polym. Sci., 104, 434 (2007).
  27. A. M. Riley, C. D. Paynter, P. M. Mcgenity, and J. M. Adams, "Factors affecting the impact properties of mineral filled polypropylene", Rubber. Process. Appl., 14, 85 (1990).
  28. G. Guerrica-Echevarra, J. I. Eguiazabal, and J. Nazabal, "INFLUENCE OF MOLDING CONDITIONS AND TALC CONTENT ON THE PROPERTIES OF POLYPROPYLENE COMPOSITES", J. EurPolym., 34, 1213 (1998).
  29. E. P. Collar, J. M. G. Martinez, O. Laguna, vJ. Taranco, "Composite materials based on PP/talc systems. Morphological variations and relationships with the properties of the system", J. Polym. Mater., 13 (1996).
  30. H. S. Yang, H. J. Kim, J. Son, H. J. Park, and B. J. Lee, "Ricehusk flour filled polypropylene composites; mechanical and morphological study", Compos. Sturct., 63, 305 (2004).
  31. R. F. Landel and L. E. Nielsen, "Mechanical properties of polymers composites", Marcel. Dekker. Inc., 1 (1993).
  32. Y. W. Leong, M. B. Abu Bakar, Z. A. M. Ishak, A. Ariffin, and B. Pukanszky, "Comparison of the Mechanical Properties and Interfacial Interactions Between Talc, Kaolin, and Calcium Carbonate Filled Polypropylene Composites", J. Appl. Polym., 91, 3315 (2004).
  33. A. K. Mehrjerdi, T. Bashir, and M. Skrifvars, "Melt rheology and extrudate swell properties of talc filled polyethylene compounds", Heliyon, 6, e04060 (2020).
  34. Rahima, N., Bhuiyan, A. H., and Abdul Gafur, Md. "Influence of Talc Filler Content on the Mechanical and DC Electrical Behavior of Compression Molded Isotactic Polypropylene Composites", J. Compos. Mater., 5, 155 (2015).
  35. R. Huang, B. J. Kim, S. Lee, Z. Yang, and Q. Wu, "Co-Extruded Wood-Plastic Composites with Talc-Filled Shells: Morphology, Mechanical, and Thermal Expansion Performance", Bioresour., 8, 2283 (2013).