• Title/Summary/Keyword: bio signals

Search Result 349, Processing Time 0.023 seconds

A Remote Rehabilitation System using Kinect Stereo Camera (키넥트 스테레오 영상을 이용한 원격 재활 시스템)

  • Kim, Kyungah;Chung, Wan-Young;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.196-201
    • /
    • 2016
  • Rehabilitation exercises are the treatments designed to help patients who are in the process of recovery from injury or illness to restore their body functions back to the original status. However, many patients suffering from chronic diseases have found difficulties visiting hospitals for the rehabilitation program due to lack of transportation, cost of the program, their own busy schedules, etc. Also, the program usually contains a few medical check-ups which can cause patients to feel uncomfortable. In this paper, we develop a remote rehabilitation system with bio-signals by a stereo camera. A Kinect stereo camera manufactured by Microsoft corporation was used to recognize the body movement of a patient by using its infrared(IR) camera. Also, we detect the chest area of a user from the skeleton data and process to gain respiratory status. ROI coordinates are created on a user's face to detect photoplethysmography(PPG) signals to calculate heart rate values from its color sensor. Finally, rehabilitation exercises and bio-signal detecting features are combined into a Windows application for the cost effective and high performance remote rehabilitation system.

Development of a Management System for the Health and Diseases of the Elderly (고령자 건강 및 질환 관리 시스템 개발)

  • Yi, Myung-Kyu;Eun, Sung-Jong;WhangBo, Taeg-Keun
    • Journal of Information Technology Services
    • /
    • v.11 no.sup
    • /
    • pp.89-101
    • /
    • 2012
  • This paper presents development of a management system for the health and diseases of the elderly. This study aimed to the promotion of the u-healthcare industry and to the increase in its competitive power by developing and expanding a system for managing the health and diseases of the elderly, in cooperation with u-healthcare companies. The study is underway through the following four substudies. In the first substudy titled development of the bio-signal collection and analysis technology using smart media, a technology that supports the collection of bio-signals in the elderly using portable terminals. In the second substudy titled development of the patient-specific healthcare platform expansion and enhancement technology, a technology is being developed for making medical decisions and taking measures based on the results of the processing of the collected bio-signals. In the third substudy titled development of the N-screen based healthcare contents open service technology, a technology is being developed to provide information on health, diseases, and medicine to platforms. In the fourth substudy titled development of the oriental medicine diagnosis and analysis technology for senile diseases. This study is expected to help ensure an excellent workforce and new technologies in the healthcare sector using smart phones, and to help reduce medical expenses by improving the health of citizens.

Development of Mobile Healthcare System Using ECG Measurement (심전도 측정을 이용한 모바일 헬스케어 시스템 개발)

  • Kim, Seong-Woo;Shin, Seung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2008-2016
    • /
    • 2014
  • With the increased attention about health care and management of heart diseases, ubiquitous healthcare services and related devices have been actively developed recently. In this paper we developed a mobile healthcare system which consists of smartphone and patch-type ECG measuring device. This system is capable of monitoring, storing, and sending bio signals such as ECG, heart rate, heart rate variability as well as exercise management functions through heart rate zones. With monitoring bio signal continuously by mobile healthcare system and wearable device like us, people can prevent chronic disease and maintain good health. Here we report our implementation results on real platforms.

Detection of Human Vital Signs and Estimation of Direction of Arrival Using Multiple Doppler Radars

  • An, Yong-Jun;Jang, Byung-Jun;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.250-255
    • /
    • 2010
  • This paper presents a non-contact measurement method of vital signal by the use of multiple-input multiple-output (MIMO) bio-radar system, configured with two antennas that are separated by a certain distance. The direction of arrival (DOA) estimation algorithm for coherent sources was applied to detect vital signals coming from different spatial angles. The proposed MIMO bio-radar system was composed of two identical transceivers sharing single VCO with a PLL. In order to verify the performance of the system, the DOA estimation experiment was completed with respect to the human target at angles varying between $-50^{\circ}$ and $50^{\circ}$ where the bio-radar system was placed at distances (corresponding to 50 cm and 95 cm) in front of a human target. The proposed MIMO bio-radar system can successfully find the direction of a human target.

Design and Implementation of an Real-time Bio-signals Monitoring System Using ZigBee and SIP (ZigBee와 SIP를 이용한 실시간 생체 신호 모니터링 시스템의 설계 및 구현)

  • Kim, Young-Joon;Jung, In-Gyo;Yang, Yong-Ho;Kim, Bo-Nam;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • In this paper, we proposed the real-time bio-signals monitoring system that is based on the ZigBee wireless sensor network and SIP. This system makes medical team and user easily confirm user's medical state irrelative to their location and time. The communication between medical sensors and the user's end device uses the ZigBee wireless sensor network. The power consumption was decreased because wireless sensor network does not use the Ad-hoc routing protocol but routing protocol that is based on tree structure. Our proposed system includes a wireless user's end device, monitoring console, SIP server and database server. This real-time bio-signals monitoring system makes possible to implement the U-health care services and improving efficiency of medical treatment services.

Measurement of Apnea Using a Polyvinylidene Fluoride Sensor Inserted in the Pillow (베게에 삽입된 PVDF센서를 이용한 무호흡증 측정)

  • Keum, dong-Wi;Kim, Jeong-Do
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.407-413
    • /
    • 2018
  • Most sleep apnea patients exhibit severe snoring, and long-lasting sleep apnea may cause insomnia, hypertension, cardiovascular diseases, stroke, and other diseases. Although polysomnography is the typical sleep diagnostic method to accurately diagnose sleep apnea by measuring a variety of bio-signals that occur during sleep, it is inconvenient as the patient has to sleep with attached electrodes at the hospital for the diagnosis. In this study, a diagnostic pillow is designed to measure respiration, heart rate, and snoring during sleep, using only one polyvinylidene fluoride (PVDF) sensor. A PVDF sensor with piezoelectric properties was inserted into a specially made instrument to extract accurate signals regardless of the posture during sleep. Wavelet analysis was used to identify the extractability and frequency domain signals of respiration, heart rate, and snoring from the signals generated by the PVDF sensor. In particular, to separate the respiratory signal in the 0.2~0.5 Hz frequency region, wavelet analysis was performed after removing 1~2 Hz frequency components. In addition, signals for respiration, heart rate, and snoring were separated from the PVDF sensor signal through a Butterworth filter and median filter based on the information obtained from the wavelet analysis. Moreover, the possibility of measuring sleep apnea from these separated signals was confirmed. To verify the usefulness of this study, data obtained during sleeping was used.

The Study to Diagnose the Road-Driver Compatibility I: Comparison of Methods for Bio-Signal Analysis (운전자 주행 적합성 진단을 위한 연구 I: 생체신호 분석방법 비교)

  • Kim, Jung-Yong;Yoon, Sang-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.1
    • /
    • pp.44-49
    • /
    • 2004
  • The aim of this study is to compare the methods in analyzing bio-signals representing measure driver's psychophysiological staus. This study has considered three approaches: first, the deterministic approach calculating the mean and standard deviation of bio-signal, second, probabilistic approach converting driver's bio-signal values to probability density function and identifying individual state relative to overall distribution, and third, diagnostic approach identifying the pattern change of signal over certain period of time. For evaluation of analysis methods, driver's bio-signal was collected under various road conditions, and three analysis approaches were applied respectively. In result, the deterministic approach was found to be simple to use, but generated a large variability of bio-signal. The probabilistic approach provide a relative status of individual driver among overall population, but too much affected by temporal variability of individual driver. The diagnostic approach seemed to reasonably find driver's psychophysiological change over certain period of time, but still needs to develop quantification method of the bio-signal.

Heme proton resonances assignments based on nuclear Overhauser effect

  • Li, Chun-Ri;Kim, So-Sun;Lu, Ming;Park, Jang-Su
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.1
    • /
    • pp.48-55
    • /
    • 2007
  • NMR signals of two hemes were assigned to particular hemes in the crystal structures by nuclear Overhauser effect experiments. The results showed that the hemes with the highest and lowest redox potentials in the one-electron reduction process correspond to the hemes I and IV in the crystal structure.

  • PDF

Development of Portable Power-Efficient Bio-Signal Monitoring System using Bluetooth for the elderly and the disabled (노약자와 장애인의 건강상태를 모니터링하기 위한 소형 저 전력 휴대용 Bio-signal 측정 장치의 개발)

  • Song, Kil-Sup;Jung, Hyun-Gwon;Song, Min;Bien, Zeung-Nam;Lee, He-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.176-179
    • /
    • 2001
  • A portable bio-signal measurement system for 24-hours continuous health monitoring of the elderly and the disabled is presented. The measurement system has the functions of acquisition of various bio-signals such as ECG, EMG and EEG, wireless data transmission/receive and adjustment of parameters such as gain and cut-off frequency. The data is sent to a host computer or other device via a Bluetooth. The design targets of the developing system for volume and power consumption are $20{\times}30{\times}5(mm^3)$ and 8mW.

  • PDF

Development of Portable Bio-signal Measurement System using Bluetooth for 24-hours Continuous Health Monitoring (24시간 건강상태 모니터링을 위한 Bluethooth를 사용한 소형 저전력 휴대형 Bio-signal 측정 장치를 개발)

  • 정현권;송길섭;나승유;이희영
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.81-84
    • /
    • 2001
  • This paper presents a potable bio-signal measurement system using Bluetooth for the 24-hours continuous health state monitoring of the elderly and the disabled. The measurement system has the functions of acquisition of various bio-signals, wireless data transmission and adjustment of parameters such as gain and cut-off frequency. This measurement system is designed according to the international specifications of the recommendation of AAMI (Association for the Advancement of Medical Instrumentation). The design targets of the developing system about volume and power consumption are 20x30x5mm$^3$ and 8mW.

  • PDF