• 제목/요약/키워드: bio oil

검색결과 541건 처리시간 0.025초

촉매열분해를 이용한 백합나무 바이오오일의 연료 특성 (Fuel characteristics of Yellow Poplar bio-oil by catalytic pyrolysis)

  • 채광석;정한섭;안병준;이재정;주영민;이수민
    • 한국응용과학기술학회지
    • /
    • 제34권1호
    • /
    • pp.1-11
    • /
    • 2017
  • 바이오오일은 고품질 화학물질로 이용이 가능하며 차세대 탄화수소 연료와 석유정제업 공급원료로 사용할 수 있기 때문에 촉망받는 신재생에너지의 하나로 상당한 관심을 받고 있다. 또한 제올라이트는 급속열분해 과정에서 크래킹 반응을 효과적으로 촉진시켜 탈산소 반응을 증가 시키고 탄화수소가 많은 안정된 바이오오일을 만든다. 그래서 본 연구에서는 백합나무 바이오오일 품질개선을 위해 촉매열분해(Control, Blackcoal, Whitecoal, ZeoliteY 및 ZSM-5)를 적용하여 특성을 조사하였다. 바이오오일의 특성 변화를 알아보기 위하여 0.3~1.4 mm 크기의 백합나무 시료 500 g을 $465^{\circ}C$에서 1.6초 동안 촉매열분해하여 바이오오일을 제조하였다. 촉매 조건 상태에서 바이오오일의 수율은 Control(54.0%)과 비교하여 Blackcoal(56.2%)를 제외하면, Whitecoal(53.5%), ZeoliteY (51.4%), 및 ZSM-5(52.0%)로 모두 감소했다. 수분 함량이 Control(37.4%)에서 촉매 처리후 37.4~45.2%로 증가함에 따라 발열량((High heating value)은 감소했다. 그러나 다른 다른 바이오오일 특성은 개선되었다. 촉매 적용 결과 바이오오일의 회분과 전산가(TAN)가 감소했고, 특히 수송연료로 중요한 특성인 점도는 Control cP(6,933) 에서 2,578 ~ 4,627 cP로 감소했다. 또한 ZeoliteY는 방향족탄화수소를 생산하고 점도를 개선시키는데 가장 효과적이였다.

피마자유를 이용한 초박층 덧씌우기용 바이오 폴리머 콘크리트의 역학적 특성 평가 (Evaluation of Mechanical Characteristics of Castor Oil Based Bio-Polymer Concretes for Ultra Thin Overlays)

  • 박희문;최지영;김태우;안영준;르반푹
    • 한국도로학회논문집
    • /
    • 제15권2호
    • /
    • pp.39-45
    • /
    • 2013
  • PURPOSES : The objective of this study is to evaluate the mechanical characteristics of castor oil based bio-polymer concrete for use of ultra thin overlays. METHODS : To evaluate the mechanical properties of bio-polymer concrete, the various laboratory tests including compressive, tensile, and flexural strength, and elongation tests were conducted on bio-polymer concrete specimens in this study. The mechanical characteristics of bio-polymer concretes were examined by changing the content of hardener and polymer binder to determine the optimum content for ultra-thin overlays. The bio-polymer concrete developed in this study was used for field trial test of the ultra-thin bridge deck pavement for verifying the workability and monitoring the long-term performance of materials. RESULTS : Test results showed that tensile and the flexural strength of bio-polymer concretes increase and the elongation of bio-polymer concrete decreases with increase of binder content. A field adhesive strength tests conducted on bridge deck pavement indicates the bio-polymer concrete has more than 2MPa of adhesive strength satisfy with the design criteria. CONCLUSIONS : The bio-polymer concrete with more than 20% content of castor oil was developed for ultra-thin overlays in this study. It is found from this study that the 35% of hardener content is most appropriate for maintaining the strength characteristics and flexibility.

Synthesis of molecularly imprinted polymer (MIP) by radiation-induced polymerization and separation of ferulic acid from rice oil using MIP-packed column

  • Yoon, Seok-Kee;Lee, Jae-Chan;Lee, Seung-Ho;Choi, Seong-Ho;Kim, Hwa-Jung;Park, Hae-Jun;Kang, Hee-Dong
    • 분석과학
    • /
    • 제19권3호
    • /
    • pp.218-225
    • /
    • 2006
  • A molecularly imprinted polymer (MIP) was synthesized by radiation-induced polymerization (RIP), where the ferulic acid was used as a template molecule, 4-vinylpyridine as a monomer and ethylene glycoldimethacrylate (EGDMA) as a cross-linking monomer. The MIP was packed in a glass column using a slurry method for use in medium pressure liquid chromatography (MPLC). The MPLC column was tested for separation and purification of ferulic acid from the rice oil. When repeated three times, the MPLC separation/purification yielded the ferulic acid with the purity higher than ~99%. The chemiluminescence of the luminal (5-amino-2,3-dihydro-1,4-phtalazinedione) measured on a potato disc slide (5.0 mm thick) was enhanced in the presence of ferulic acid, while, without the ferulic acid, the chemiluminescence of luminol on the potato slice disc was not observed, which suggests the ferulic acid obtained from the rice oil can be useful for immunoassay.

바이오디젤 생산을 위한 어유의 에스테르화 및 전이에스테르화 반응 (Esterification and Trans-esterification Reaction of Fish Oil for Bio-diesel Production)

  • 이영재;김덕근;이진석;박순철;이진원
    • 청정기술
    • /
    • 제19권3호
    • /
    • pp.313-319
    • /
    • 2013
  • 본 연구에서는 유리지방산을 4% 포함한 어유로부터 바이오디젤을 제조하기 위해 산촉매를 이용한 에스테르화 반응과 염기촉매를 이용한 전이에스테르화 반응을 수행하였다. 실험에 사용된 어유는 GS바이오사(社)로부터 공급받은 베트남산 메기(catfish)에서 추출된 오일을 사용하였다. 에스테르화 반응에 대하여 불균질계 고체 산촉매로 Amberlyst-15와 Amberlyst BD-20을 이용하였으며 균질계 산촉매로 황산을 사용하였다. 에스테르화 반응에 의한 유리지방산 제거율이 가장 높은 촉매는 황산으로 나타났으며 반응시간도 가장 짧게 나타났다. 3종의 염기촉매 KOH, $NaOCH_3$, NaOH를 이용하여 어유의 전이에스테르화 반응 특성을 조사한 결과 KOH 촉매가 가장 적합한 것으로 나타났다. $NaOCH_3$와 NaOH 촉매의 경우 전이에스테르화 반응시 글리세롤과 바이오디젤이 일정한 조건에서 고형화 현상이 관찰되었으며 비누화 반응이 진행된 것으로 판단된다. KOH 촉매를 이용하여 초기 원료 산가와 메탄올 투입량이 전이에스테르화 반응에 미치는 영향을 조사한 결과 초기 원료오일의 산가는 낮을수록 좋았으며 메탄올과 오일의 몰비는 9:1이 적합한 것으로 도출되었다.

돈분과 돈슬러리의 성분이 열분해공정에 의한 바이오오일 생산효율에 미치는 영향 (Effect of Pig Feces and Pig Waste Mixture Compositions on Bio-oil Production by Pyrolysis Process)

  • ;최홍림;신중두;백이
    • 유기물자원화
    • /
    • 제17권4호
    • /
    • pp.29-35
    • /
    • 2009
  • 바이오매스를 바이오오일로 전환시기키 위하여 오거형의 반응조를 설계, 제작하여 실험하였다. 10.2L의 반응조는 $550^{\circ}C$를 유지하며 Batch식으로 운영하였다. 돈분뇨 혼합물, 돈분 왕겨혼합물, 돈분 톱밥혼합물 등 세 가지 혼합물을 대상으로 주(主) 구성성분인 헤미셀루로즈, 리그닌, 셀루로즈, 단백질, 지질(脂質)등을 화학적으로 분석하였다. 실험결과에 의하면 전섬유소 (holocellulose = hemicellulose + cellulose), 리그닌(lignin)의 함유량이 클수록 바이오오일 생산량은 많았으나, 회분(ash)함량은 현저한 감소를 나타내었다. 본 연구에서는 다양한 바이오매스기질을 평가하였으며, 돈분과 왕겨의 상관성은 거의 나타나지 않았으나 돈분과 톱밥의 상관성은 매우 높게 나타났다.

  • PDF

Characterization of physiochemical and nutrient profiles in canola feedstocks and co-products from bio-oil processing: impacted by source origin

  • Alessandra M. R. C. B. de Oliveira;Peiqiang Yu
    • Animal Bioscience
    • /
    • 제36권7호
    • /
    • pp.1044-1058
    • /
    • 2023
  • Objective: The objective of this study was to characterize physiochemical and nutrient profiles of feedstock and co-products from canola bio-oil processing that were impacted by source origin. The feedstocks and co-products (mash, pellet) were randomly collected from five different bio-oil processing plants with five different batches of samples in each bio-processing plant in Canada (CA) and China (CH). Methods: The detailed chemical composition, energy profile, total digestible nutrient (TDN), protein and carbohydrate subfractions, and their degradation and digestion (CNCPS6.5) were determined. Results: The results showed that TDN1x was similar in meals between CA and CH. CH meals and feedstock had higher, truly digestible crude protein (tdCP) and neutral detergent fiber (tdNDF) than CA while CA had higher truly digestible non-fiber carbohydrate (tdNFC). The metabolizable energy (ME3x), net energy (NELp3x, NEm3x, and NEg3x) were similar in meals between CA and CH. No differences were observed in energy profile of seeds between CA and CH. The protein and carbohydrate subfractions of seeds within CH were similar. The results also showed that pelleting of meals affected protein sub-fractionation of CA meals, except rapidly degradable fractions (PB1), rumen degradable (RDPB1) and undegrdable PB1 (RUPB1), and intestinal digestible PB1 (DIGPB1). Canola meals were different in the soluble (PA2) and slowly degradable fractions (PB2) between CA and CH. The carbohydrate fractions of intermediately degradable fraction (CB2), slowly degradable fraction (CB3), and undegradable fraction (CC) were different among CH meals. CH presented higher soluble carbohydrate (CA4) and lower CB2, and CC than CA meals. Conclusion: The results indicated that although the seeds were similar within and between CA and CH, either oil-extraction process or meal pelleting seemed to have generated significantly different aspects in physiochemical and nutrient profiles in the meals. Nutritionists and producers need to regularly check nutritional value of meal mash and pellets for precision feeding.

Performance characteristics of a single-cylinder power tiller engine with biodiesel produced from mixed waste cooking oil

  • Choi, Hwon;Woo, Duk Gam;Kim, Tae Han
    • 농업과학연구
    • /
    • 제47권1호
    • /
    • pp.29-41
    • /
    • 2020
  • Biodiesel is a clean energy resource that can replace diesel as fuel, which can be used without any structural changes to the engine. Vegetable oil accounts for 95 percent of the raw materials used to produce biodiesel. Thus, many problems can arise, such as rising prices of food resources and an imbalance between supply and demand. Most of the previous studies using waste cooking oil used waste cooking oil from a single material. However, the waste cooking oil that is actually collected is a mixture of various types of waste cooking oil. Therefore, in this study, biodiesel produced with mixed waste cooking oil was supplied to an agricultural single-cylinder diesel engine to assess its potential as an alternative fuel. Based on the results, the brake specific fuel consumption (BSFC) increased compared to diesel, and the axis power decreased to between 70 and 99% compared to the diesel. For emissions, NOx and CO2 were increased, but CO and HC were decreased by up to 1 to 7% and 16 to 48%, respectively, compared to diesel. The emission characteristics of the mixed waste cooking oil biodiesel used in this study were shown to be similar to those of conventional vegetable biodiesel, confirming its potential as a fuel for mixed waste cooking oil biodiesel.

연속공정에서 리파제 촉매 전이에스테르화에 의한 식물유의 바이오디젤화 (Bio-diesel of Vegetable Oils by Lipase Catalyzed Trans-esterification into Continuous Process)

  • 현영진;김해성
    • 한국응용과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.106-115
    • /
    • 2005
  • Bio-diesel as fatty acid methyl ester was derived from such oils as soybean, peanut and canola oil by lipase catalyzed continuous trans-esterification. So the activation of lipase(Novozym - 435) was kept to be up to 4:1, the limiting molar ratio of methanol to oil under one-step addition of methanol due to the miscibility of oil and methanol through the static mixer for 4hrs and the elimination of glycerol on the surface of lipase by 7wt% silica gel. Therefore the overall yield of fatty acid methyl ester from soybean oil appeared to be 98% at 50$^{\cdot}C$ of reaction temperature under two-steps addition of methanol with 2${\times}$2:1 of methanol to oil molar ratio at an interval of 5.5hrs, 7wt% of lipase, 24 number of mixer elements, 0.2ml/min of flow rate and 7wt% of silica gel.

식물성 오일 기반 바이오 탄성체의 합성과 특성 (Synthesis and Characterization of Bio-Elastomer Based on Vegetable Oils)

  • 이혁;곽경환;김진국
    • Elastomers and Composites
    • /
    • 제47권1호
    • /
    • pp.30-35
    • /
    • 2012
  • 새로운 스타폴리머인 바이오폴리부타디엔은 리빙 음이온중합이라는 고분자의 정밀 합성법을 통하여 분자량, 분자량분포, 조성 및 세부구조를 제어하였다. 리빙 음이온중합에 의해 n-BuLi으로 개시된 polybutadienyllithium(PBDLi)의 연쇄말단이 ESO(Epoxidized Soybean Oil)의 기능성 그룹과 커플링 반응을 일으키며 스타폴리머를 합성한다. 분자량이 1,000/5,000/10,000(g/mol)인 PBDLi을 중합하여 THF존재하에서 반응 후 GPC에 의한 분자량 및 arms분석과 $^1H$-NMR, FT-IR에 의한 고분자 구조 분석을 통하여 바이오폴리부타디엔의 합성을 확인하였다.

바이오 에탄올 혼합유에 대한 디젤기관의 연소특성 (Combustion characteristics of diesel engine with bio-ethanol blend fuel)

  • 정석호
    • 수산해양기술연구
    • /
    • 제45권2호
    • /
    • pp.114-121
    • /
    • 2009
  • There are increased in using the bio-ethanol, as the carbon neutral attracts many researchers due to a reduction in carbon dioxide spotted as the global warming gas. A gasoline engine with 100% of the bioethanol was developed and used in Brazil already, but researches of using the bio-ethanol in diesel engines are lack. In this study, combustion tests with blend fuel of the gas oil and bio ethanol by 50% maximally due to a low cetane number of bio-ethanol were accomplished as a basic study of introduction of using the bioethanol in diesel engines. The result was that smoke emission was decreased with increase in proportion of the bio-ethanol, due to the increase of a amount of pre-mixed combustion with ignition delay. Although the amount of $CO_2$ is reduced according as the bio-ethanol is used(carbon neutral), the emission of $CO_2$ with increase in the proportion of the bio-ethanol was more increased due to lower a heat value of bio-ethanol than gas oil.