• Title/Summary/Keyword: bio gas

Search Result 551, Processing Time 0.032 seconds

Production Processes of Porous Metals and Their Applications (다공질 금속의 제조와 응용)

  • Shim, Jae-Dong;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.155-164
    • /
    • 2015
  • Porous metals are called as a new material of 21th century because they show not only extremely low density, but also novel physical, thermal, mechanical, electrical, and acoustic properties. Since the late in the 1990's, considerable progress has been made in the production technologies of many kinds of porous metals such as aluminum, titanium, nickel, copper, stainless steel, etc. The commercial applications of porous metals have been increased in the field of light weight structures, sound absorption, mechanical damping, bio-materials, thermal management for heat exchanger and heat sink. Especially, the porous metals are promising in automotive applications for light-weighting body sheets and various structural components due to the good relation between weight and stiffness. This paper reviews the recent progress of production techniques using molten metal bubbling, metal foaming, gas expansion, hollow sphere structure, unidirectional solidification, etc, which have been commercialized or under developing, and finally introduces several case studies on the potential applications of porous metals in the area of heat sink, automotive pannel, cathod for Ni-MH battery, golf putter and medical implant.

Development and characterization of an eco-friendly packaging film using Gelidium amansii and Sargassum horneri (우뭇가사리와 괭생이모자반을 이용한 친환경 포장 필름 개발 및 특성 연구)

  • Wan young, Cha;Chan, Byon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.76-85
    • /
    • 2022
  • In this study, a biodegradable packaging film was developed using two marine algae, Gelidium amansii, and Sargassum horneri. The chemical properties and microstructure of the developed film were evaluated using field emission scanning electron microscope, Fourier transform infrared spectroscopy, gas chromatography-Mass spectroscopy, and thermogravimetric analysis. Furthermore, the mechanical properties and toxicity of the film were evaluated using the ISO 1924 and IEC 62321 methods, respectively. The biodegradability of the film was evaluated according to ISO 14855-1:2012 method. The film was primarily made of cellulose and had biodegradability that was about 17 times greater than that of PBS, a representative eco-friendly plastic. Moreover, the mechanical properties improved by approximately 40% compared to the seaweed-based film of the previous study. The virulence test revealed that the content of all of the toxic substances listed in IEC62321 was below the measurement limit. An egg carton that can be used in practice was manufactured in accordance with ISO 534, and its applicability was tested using the biodegradable packaging film prepared.

Investigation of 180W separation by transient single withdrawal cascade using Salp Swarm optimization algorithm

  • Morteza Imani;Mahdi Aghaie
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1225-1232
    • /
    • 2023
  • The 180W is the lightest isotope of Tungsten with small abundance ratio. It is slightly radioactive (α decay), with an extremely long half-life. Its separation is possible by non-conventional single withdrawal cascades. The 180W is used in radioisotopes production and study of metals through gamma-ray spectroscopy. In this paper, single withdrawal cascade model is developed to evaluate multicomponent separation in non-conventional transient cascades, and available experimental results are used for validation. Numerical studies for separation of 180W in a transient single withdrawal cascade are performed. Parameters affecting the separation and equilibrium time of cascade such as number of stages, cascade arrangements, feed location and flow rate for a fixed number of gas centrifuges (GC) are investigated. The Salp Swarm Algorithm (SSA) as a bio-inspired optimization algorithm is applied as a novel method to minimize the feed consumption to obtain desired concentration in the collection tank. Examining different cascade arrangements, it is observed in arrangements with more stages, the separation is further efficient. Based on the obtained results, with increasing feed flow rate, for fixed product concentration, the cascade equilibrium time decreases. Also, it is shown while the feed location is the farthest stage from the collection tank, the separation and cascade equilibrium time are well-organized. Finally, using SSA optimal parameters of the cascade is calculated, and optimal arrangement to produce 5 gr of 180W with 90% concentration in the tank, is proposed.

Effects of Tween 80 on In Vitro Fermentation of Silages and Interactive Effects of Tween 80, Monensin and Exogenous Fibrolytic Enzymes on Growth Performance by Feedlot Cattle

  • Wang, Y.;McAllister, T.A.;Baah, J.;Wilde, R.;Beauchemin, K.A.;Rode, L.M.;Shelford, J.A.;Kamande, G.M.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.968-978
    • /
    • 2003
  • The effects of monensin, Tween 80 and exogenous fibrolytic enzymes on ruminal fermentation and animal performance were studied in vitro and in vivo. In Expt 1, the effects of the surfactant Tween 80 (0.2% wt/wt, DM basis) on ruminal fermentation of alfalfa, corn and orchardgrass silages were investigated using in vitro gas production techniques. Tween 80 did not affect (p>0.05) cumulative gas production at 24 h, but it reduced (p<0.05) the lag in fermentation of all three silages. With corn silage and orchardgrass silage, gas production rates and concentrations of total volatile fatty acids (VFA) were increased (p<0.05) by Tween 80; with alfalfa silage, they were reduced (p<0.05). Tween 80 increased (p<0.05) the proportion of propionate in total VFA, and reduced (p<0.05) acetate to propionate ratios (A:P) with all three silages. In Expt 2, exogenous fibrolytic enzymes (E; at 0, 37.5 or 75 g/tonne DM), monensin (M; at 0 or 25 ppm and Tween 80 (T; at 0 or 2 L/tonne DM) were added alone or in combination to backgrounding and finishing diets fed to 320 crossbred steers in a feeding trial with a $3{\times}2{\times}$2 factorial arrangement of treatments. The backgrounding and finishing diets contained barley grain and barley silage in ratios of 57.8:42.2 and 93.5:6.5 (DM basis), respectively. Added alone, none of the additives affected DM intake (p>0.1) in the backgrounding or in the finishing period, but interactive $M{\times}T$ effects were observed in the finishing period (p=0.02) and overall (p=0.04). In the finishing period, T without M tended to reduce DM intake (p=0.11), but T with M increased (p=0.05) DM intake. Monensin increased average daily gain (ADG) during backgrounding (p=0.07) and finishing (p=0.01), and this ionophore also improved overall feed efficiency (p=0.02). Warm carcass weight was increased (p<0.001) by M, but dressing percentage was reduced (p=0.07). In the backgrounding period, T increased ADG by 7% (p=0.06). Enzymes increased (p=0.07) ADG by 5 and 6% (low and high application rates, respectively) during backgrounding, but did not affect (p>0.10) ADG during finishing, or overall feed efficiency. Whereas T enhanced the positive effects of M on ADG during backgrounding (p=0.04) and overall (p=0.05), it had no impact (p>0.1) on the effects of E. Interactions between M and T suggest that the surfactant may have potential for enhancing the positive effects of monensin on beef production, but this requires further research.

An Experimental Study of the Fuel Additive to Improve the Performance of a 2-Stroke Large Diesel Engine (2행정 대형 디젤엔진의 성능향상을 위한 연료첨가제의 실험적 연구)

  • Ryu, Younghyun;Lee, Youngseo;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.620-625
    • /
    • 2015
  • In an effort to reduce the onset of global warming, the International Maritime Organization Marine Environment Protection Committee (IMO MEPC) proposed the reduction in ship speeds as a way of lowering the proportion of carbon dioxide ($CO_2$) in the Green House Gas emissions from ships. To minimize fuel costs, shipping companies have already been performing slow steaming for their own fleets. Specifically, the slow steaming approach has been adopted for most ocean-going container lines. In addition, because of the increased marine fuel cost that is required to enable increased capacity, there is an urgent need for more advanced fuel-saving technologies. Therefore, in this present study, we propose a fuel-cost reduction method that can improve the performance of diesel engines. We introduce a predetermined amount (0.025% of the amount of fuel used) of fuel additive (oil-soluble calcium-based organometallic compound). For improved experimental accuracy, as the test subjects, we utilize a large two-stroke diesel engine installed in land plants. The loads of the test engine were classified as low, medium, and high (50, 75, and 100%, respectively). We compare the engine performance parameters (power output, fuel consumption rate, p-max, and exhaust temperature) before and after the addition of fuel additives. Our experimental results, confirmed that we can realize fuel-cost savings of at least 2% by adding the fuel additive in low load conditions (50%). Likewise, the maximum combustion pressure was found to have increased. On the other hand, we observed that there was a reduction in the exhaust temperature.

Processing Characteristics of the Condensed Wastewater Resulting from Food Waste Disposal using a Submerged Polyethylene Hollow Fiber Membrane (음식물 소멸기에서 발생하는 응축폐수의 Polyethylene 침지형 중공사막을 이용한 처리 특성)

  • Ryu, Jae-Sang;Jeon, Tae-Bong;Kim, Jin-Ho;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • This study is conducted about the system that reduces organism after fermenting food waste from a food waste disposal equipment, divides gas made when food waste is fermented into gas and water, and then sends gas to a reactor again, condenses water, and apply it to the MBR system with submerged MF hollow fiber membranes. A submerged MF hollow fiber membrane module was installed to a food waste disposal equipment and a water treatment system made by Bio Hitech Co,. Ltd. to process food waste generated from a staff cafeteria in a H institute for 90 days. For initial seeding of a food waste disposal equipment, 305 kg of rice bran, chaff, and sawdust as well as 1,648 kg of food were input during the operation, and 1,600 L of condensed wastewater occurred. Fermented by-product after finishing running a food waste disposal equipment was 386 kg and its reduction was shown to be 80%. The organism was processed by applying submerged MF hollow fiber membrane module to the MBR system of condensed wastewater, and the result shows reduction rates were BOD 99.9%, COD 97.5%, SS 98.6%, T-N 54.6% and T-P 34.7% and the total colon bacillus was perfectly eliminated.

Characteristics for Co-digestion of Food Waste and Night Soil using BMP Test (BMP실험을 이용한 음식물폐기물 및 분뇨의 병합소화 특성)

  • Cho, Jinkyu;Kim, Hyungjin;Oh, Daemin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.13-18
    • /
    • 2014
  • BMP test was carried out to evaluate the characteristics for co-digestion of night soil and food waste. 6 types of sludge were tested in 30 days which were raw, excess, digested, night soil/septic tank (1:1), food waste (food : dilution water = 1:1), and mixed sludge. Bio gas was produced actively after 2 days, and continued in 2 weeks. Gas generation amount was decreased rapidly after considerable space of time. Especially maximum productivity of gas was shown in 7~8 days. The ultimate methane yields of raw, excess, digested, night soil/septic tank, food waste, and mixed sludge were 64.63, 67.49, 66.45, 72.44, 107.85, and 46.71 mL $CH_4/g$ VS respectively from Modified Gompertz model. The lag growth phase time and maximum specific methane production rate of mixed sludge were 1.88 day and 80.4 mL/day respectively. The methane potential of mixed sludge was higher than individual sludge. So high methane potential was expected by controlling mixing ratio of food waste. Besides stable operation of digestion tank and the solution of oligotrophic problem were possible.

Effects of Medicinal Herb Extracts on In vitro Ruminal Methanogenesis, Microbe Diversity and Fermentation System

  • Kim, Eun Tae;Hwang, Hee Soon;Lee, Sang Min;Lee, Shin Ja;Lee, Il Dong;Lee, Su Kyoung;Oh, Da Som;Lim, Jung Hwa;Yoon, Ho Baek;Jeong, Ha Yeon;Im, Seok Ki;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1280-1286
    • /
    • 2016
  • This study was aimed to evaluate the in vitro effects of medicinal herb extracts (MHEs) on ruminal fermentation characteristics and the inhibition of protozoa to reduce methane production in the rumen. A fistulated Hanwoo was used as a donor of rumen fluid. The MHEs (T1, Veratrum patulum; T2, Iris ensata var. spontanea; T3, Arisaema ringens; T4, Carduus crispus; T5, Pueraria thunbergiana) were added to the in vitro fermentation bottles containing the rumen fluid and medium. Total volatile fatty acid (tVFA), total gas production, gas profiles, and the ruminal microbe communities were measured. The tVFA concentration was increased or decreased as compared to the control, and there was a significant (p<0.05) difference after 24 h incubation. pH and ruminal disappearance of dry matter did not show significant difference. As the in vitro ruminal fermentation progressed, total gas production in added MHEs was increased, while the methane production was decreased compared to the control. In particular, Arisaema ringens extract led to decrease methane production by more than 43%. In addition, the result of real-time polymerase chain reaction indicted that the protozoa population in all added MHEs decreased more than that of the control. In conclusion, the results of this study indicated that MHEs could have properties that decrease ruminal methanogenesis by inhibiting protozoa species and might be promising feed additives for ruminants.

Synthesis of Soluble Copolyimides Using an Alicyclic Dianhydride and Their $CO_2/CH_4$ Separation Properties (지환족 다이안하이드라이드를 이용한 용해성 폴리이미드 공중합체 합성 및 메탄/이산화탄소 분리특성)

  • Park, Chae Young;Lee, Yongtaek;Kim, Jeong Hoon
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this study, four soluble homo- and co-polyimides using 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) and 4,4'-diaminodiphenyl ether (ODA) monomers were synthesized to develop the gas separation membrane with good $CO_2/CH_4$ separation properties. To prepare the copolyimides, 20 mol% of three dianhydrides - (4,4'-(hexafluoroisoproplidene)diphthalic anhydride (6FDA), 4,4'-biphthalic anhydride (BPDA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) - were added in DOCDA-ODA monomer mixture, respectively. All the synthesized homo- and co-polyimides were characterized by FT-IR. Their thermal properties were analyzed with differential scanning calorimeter (DSC). Dense membranes were prepared from these copolyimides to check their gas permeation properties for $CO_2$ and $CH_4$ gases using a time-lag method. The permeation testing results are as follows; DOCDA/ODA homopolymer showed 1.71 barrer of $CO_2$ permeability and 74.35 of $CO_2/CH_4$ selectivity. The three polyimide copolymers (DOCDA/6FDA-ODA, DOCDA/BPDA-ODA, DOCDA/BTDA-ODA) showed lower $CO_2/CH_4$ selectivities and higher $CO_2$ permeabilities than the homopolymer (DOCDA-ODA). DOCDA/6FDA-ODA showed twice times higher $CO_2$ permeabilities without severe $CO_2/CH_4$ selectivity loss than the DOCDA-ODA.

A Study on the $SO_2/CO_2/N_2$ Mixed Gas Separation Using Polyetherimide/PEBAX/PEG Composite Hollow Fiber Membrane (Polyetherimide/PEBAX/PEG 복합 중공사막을 이용한 $SO_2/CO_2/N_2$ 혼합기체 분리에 관한 연구)

  • Hyung, Chan-Heui;Park, Chun-Dong;Kim, Kee-Hong;Rhim, Ji-Won;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.404-414
    • /
    • 2012
  • In order to investigate $SO_2$ removal, PEI hollow fiber membranes were produced by a dry-wet phase inversion method. The membrane support layer on surface was coated with PEBAX1657$^{(R)}$ and PEG blending materials. Modules were prepared for the single gas permeation characteristics of composite membrane according to temperature and pressure. As a result, $SO_2$ permeance and $SO_2/N_2$ selectivity were 220~1220 GPU and 100~506 through operating condition, respectively. Moreover, $SO_2/CO_2/N_2$ mixture gas was used to compare the performance of separation properties according to temperature, pressure and retentate flow rate difference. $SO_2$ removal efficiency was increased with pressure and temperature.