• 제목/요약/키워드: bio degradation

검색결과 299건 처리시간 0.026초

Enhanced Biodegradation of Lindane Using Oil-in-Water Bio-Microemulsion Stabilized by Biosurfactant Produced by a New Yeast Strain, Pseudozyma VITJzN01

  • Abdul Salam, Jaseetha;Das, Nilanjana
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1598-1609
    • /
    • 2013
  • Organochlorine pesticide residues continue to remain as a major environmental threat worldwide. Lindane is an organochlorine pesticide widely used as an acaricide in medicine and agriculture. In the present study, a new lindane-degrading yeast strain, Pseudozyma VITJzN01, was identified as a copious producer of glycolipid biosurfactant. The glycolipid structure and type were elucidated by FTIR, NMR spectroscopy, and GC-MS analysis. The surface activity and stability of the glycolipid was analyzed. The glycolipids, characterized as mannosylerythritol lipids (MELs), exhibited excellent surface active properties and the surface tension of water was reduced to 29 mN/m. The glycolipid was stable over a wide range of pH, temperature, and salinity, showing a very low CMC of 25 mg/l. Bio-microemulsion of olive oil-in-water (O/W) was prepared using the purified biosurfactant without addition of any synthetic cosurfactants, for lindane solubilization and enhanced degradation assay in liquid and soil slurry. The O/W bio-microemulsions enhanced the solubility of lindane up to 40-folds. Degradation of lindane (700 mg/l) by VITJzN01 in liquid medium amended with bio-microemulsions was found to be enhanced by 36% in 2 days, compared with degradation in 12 days in the absence of bio-microemulsions. Lindane-spiked soil slurry incubated with bio-microemulsions also showed 20-40% enhanced degradation compared with the treatment with glycolipids or yeast alone. This is the first report on lindane degradation by Pseudozyma sp., and application of bio-microemulsions for enhanced lindane degradation. MEL-stabilized bio-microemulsions can serve as a potential tool for enhanced remediation of diverse lindane-contaminated environments.

Enhanced Degradation of TNT and RDX by Bio-reduced Iron Bearing Soil Minerals

  • Cho, Changhyun;Bae, Sungjun;Lee, Woojin
    • Advances in environmental research
    • /
    • 제1권1호
    • /
    • pp.1-14
    • /
    • 2012
  • We demonstrated that reductive degradation of 2,4,6-Trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (Royal Demolition Explosive, RDX) can be enhanced by bio-reduced iron-bearing soil minerals (IBSMs) using Shewanella putrefaciens CN32 (CN32). The degradation kinetic rate constant of TNT by bio-reduced magnetite was the highest (0.0039 $h^{-1}$), followed by green rust (0.0022 $h^{-1}$), goethite (0.0017 $h^{-1}$), lepidocrocite (0.0016 $h^{-1}$), and hematite (0.0006 $h^{-1}$). The highest rate constant was obtained by bio-reduced lepidocrocite (0.1811 $h^{-1}$) during RDX degradation, followed by magnetite (0.1700 $h^{-1}$), green rust (0.0757 $h^{-1}$), hematite (0.0495 $h^{-1}$), and goethite (0.0394 $h^{-1}$). Significant increase of Fe(II) was observed during the reductive degradation of TNT and RDX by bio-reduced IBSMs. X-ray diffraction and electron microscope analyses were conducted for identification of degradation mechanism of TNT and RDX in this study. 4-amino-dinitrotoluene were detected as products during TNT degradation, while Hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine, Hexahydro-1,3-dinitroso-5-nitro-1,3,5triazine, and Hexahydro-1,3,5-trinitroso-1,3,5-triazine were observed during RDX degradation.

Methodology to Simultaneously Optimize the Inlet Ozone Concentration to Oxidize NO and Relative Humidity Composition for the $NO_x$ Degradation using Soil Bio-filter

  • Cho, Ki-Chul;Hwang, Kyung-Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제24권E2호
    • /
    • pp.83-91
    • /
    • 2008
  • This work investigated the methodology to simultaneously optimize the ozone and relative humidity composition for the $NO_x$ degradation using soil biofilter. Experiments were made as a function of inlet ozone concentration ($0{\sim}1,770\;ppb$) and relative humidity ($38{\sim}81%$). Factorial design ($2^2+3$) and response surface methodology by central composite designs were used to examine the role of two factors and optimal response condition on $NO_x$ degradation. It was found that a second-order response surface model can properly interpret the experimental data with an $R^2$-value of 0.9730 and F-value of 71.83, based on which the maximum $NO_x$ degradation was predicted up to 92.8% within our experimental conditions.

MTBE를 포함한 기타 가솔린 첨가제의 생 분해 적용 가능성 평가(I) : 호기성 조건 (An Assessment of the Feasibility of (I) : Condition of Aerobic)

  • 정우진;장순웅
    • 한국환경과학회지
    • /
    • 제25권6호
    • /
    • pp.757-766
    • /
    • 2016
  • MTBE and other gasoline additives contained in gasoline are known to be a refractory substance resistant to biodegradation. As a method of removing these substances, a research of method using native microbes of polluted soil was progressed and among these, bio-degradation possibility under aerobic condition was evaluated. All of the experiments were progressed based on batch experiment of lab scale and analyzed by GC-FID using HS-SPME technique. The result of bio-degradation experiment based on MTBE and other additives(ETBE, TAME) was observed below 1 mg/L, which initial concentration were 100 mg/L for each method. And through production of by-product and CO2, partial mineralization was confirmed. Degradation velocity of each additive was promptly represented in the order of TBA>ETBE>MTBE>TAME. Through this study, bio-degradation possibility of native microbes of oil polluted soil, MTBE and other gasoline additives was confirmed and it was considered that the result could be used for basic experiment data in removing oil pollutants of soil.

디젤오염 지하수 정화를 위한 공기주입정화법 칼럼 실험 (Bio Sparging Column Experiment for Remediation of Diesel Contaminated Groundwater)

  • 장순웅;이시진;송정훈;권수열
    • 한국환경과학회지
    • /
    • 제13권12호
    • /
    • pp.1059-1065
    • /
    • 2004
  • Bio sparging experiments were conducted in a laboratory column to investigate the potential removal of diesel contaminated groundwater. The objectives in this study were (a) to determine the extent of diesel degradation in laboratory columns under supplement of nutrient; (b) to determine the effect of variation of air flow in the removal of diesel and (c) to evaluate the potential enhancement of diesel degradation as a function of temperature. Our results showed that the nutrient supplement and higher air flow greatly enhanced diesel degradation. However, the variation of water temperature examined slightly increased degradation rate of diesel fuel.

목질바이오칩에 의한 음식물쓰레기 발효-소멸반응에서의 아데노신3인산의 변화 (Variation of Adenosine tri-Phosphate(ATP) in Fermentation-Extinction of Food Wastes with Wood Bio-Chip)

  • 오정익
    • 대한환경공학회지
    • /
    • 제32권4호
    • /
    • pp.363-368
    • /
    • 2010
  • 본 연구에서는 아데노신3인산의 측정을 통하여 음식물 쓰레기의 발효-소멸반응에서의 미생물이 발생 및 활성정도를 총괄할 수 있는 인자를 도출할 수 있었다. 목질바이오칩을 이용한 음식물 쓰레기의 발효-소멸에서 무게감량 및 유기물 분해율이 높아질수록 아데노신3인산의 농도가 증가하였다. 아데노신3인산은 목질바이오칩의 종류별 유기물 분해 및 무게 감량에 대한 성능 선택성 설정에 유용한 인자로 활용 기대된다.

폐가축사체 가수분해를 위한 최적 가수분해제 선정 (Selection of Optimal Degradation Agents for Hydrolysis of Animal Cadavers)

  • 서영진;서동철;최익원;강세원;이상규;성환후;김태승;김현구;박선화;강석진;조주식
    • 한국토양비료학회지
    • /
    • 제45권2호
    • /
    • pp.241-247
    • /
    • 2012
  • Many infectious diseases have emerged or re-emerged during the past 50 years in South Korea. There were three outbreaks of foot and mouth disease (FMD) in South Korea between January 2010 and March 2011. Over 3.45 million animals were slaughtered (33.3% of the existing pigs, 8.4% of dairy cows and 3.4% of cattle). To select optimal degradation agents of animal cadavers, degradation rates and fertilizer components of pig cadavers were investigated using hydrogen chloride (HCl), potassium hydroxide (KOH) and sodium hydroxide (NaOH) hydrolysis methods. Degradation rates of pig cadavers using HCl, KOH and NaOH were 81.1, 82.8 and 91.6%, respectively. Total nitrogen (T-N) concentration in degradation solution of pig cadavers using KOH hydrolysis method was higher than that in NaOH and HCl hydrolysis methods. Total phosphorus ($P_2O_5$) concentrations in degradation solution of pig cadavers in all hydrolysis methods ranged 0.14 ~ 0.28%. Total potassium ($K_2O$) concentration for KOH hydrolysis method was higher than that for other hydrolysis methods. The concentration of T-N and $K_2O$ in degradation solution of pig cadavers by KOH hydrolysis method were higher than that in NaOH and HCl hydrolysis methods. Thus, to recycle animal cadavers in agriculture, the optimal degradation agent for hydrolysis was KOH.

UV/TiO2 허니컴 반응기에서 페놀의 광산화 반응 (Photocatalytic Degradation of Pheonol in UV/TiO2 Honeycomb Reactor)

  • 한포근;박상은;이상화
    • 공업화학
    • /
    • 제17권1호
    • /
    • pp.100-105
    • /
    • 2006
  • $UV/TiO_2$ 허니컴 광촉매가 고정된 반응기에서 여러 운전 변수에 따른 페놀의 분해반응을 고찰하였다. 광촉매의 종류에 따른 페놀의 분해능을 비교한 결과, 이시하라사 STS-02로 코팅한 허니컴 광촉매는 데구사 P25에 비해 약간 높은 광산화 활성을 나타내 주었다. 반면에 국내 N사의 광촉매로 코팅한 허니컴의 경우에는 페놀의 광분해 효과가 거의 나타나지 않았다. 허니컴 광촉매는 데구사 P25의 코팅량이 증가함에 따라 페놀의 광산화 반응속도가 증가하는 경향을 나타내주었다. 데구사 P25로 코팅된 허니컴 반응기의 경우에 원수의 유량이 증가함에 따라 페놀의 광산화 속도가 지속적으로 증가하다가 500 mL/min 이상의 유속에서는 감소하는 경향을 나타내었다. 광촉매 표면이 페놀에 의해 미리 흡착된 경우에는 초기 반응시간에 자외선 조사에 의한 페놀의 부분산화 반응이 일어나 오히려 269 nm에서 페놀의 흡광도가 상승하는 결과를 나타내 주었다.

Bio 필터를 이용한 Toluene 제거에서 미생물분해에 관한 연구 (A Study on Microbial Degradation for Removal of Toluene Vapour by Biofilter)

  • 하상안;강신묵
    • 환경위생공학
    • /
    • 제14권1호
    • /
    • pp.24-30
    • /
    • 1999
  • A biological filter for treatment of toluene among volatile organic compounds was studied. The investigation was conducted using specially built stainless steel columns packed with granular activated carbon and cold for removal of toluene. The G.A. and mold as filter material was also coated with Pseudomonas putida microorganisms.The biofilter unit was operated in the condition of moisture content vairation at gas loading rate of 12.5 l/min. Gaseous toluene taken from tedlar bag was analyzed by the use of G.C equipped with F.I.d detector. The removal efficiency of gaseous toluene was 95% at average inlet concentration of 950 ppm during bio-degradation operating condition. Effective removal efficiency was obtained with moisture content 27.5% at activated carbon and 32% at mold in this study. The effective operating condition were obtained with pH 6-8, temperature 28-42℃ for microbial degradation at gas loading rate of 12.5 l/min in packed material.

  • PDF

혐기성 조건에서 에탄올의 주입에 따른 프로피온산의 저감에 관한 연구 (Effect of Ethanol on the Reduction of Propionate under Anaerobic Condition)

  • 현승훈;김도희;박수진;황문현;김인수
    • 대한환경공학회지
    • /
    • 제22권10호
    • /
    • pp.1869-1879
    • /
    • 2000
  • 혐기성 소화공정 중 생성되는 주요 중간대사산물인 프로피온산의 분해대사에 대한 연구중 에탄올과의 산화 환원 반응인 coupling 반응으로써 혐기성 소화공정에서 프로피온산 축적을 저감시킬 수 있는 연구를 수행하였다. 따라서, 본 연구는 혐기성 공정에서 프로피온산의 전환에 따른 동력학적 반응과 에탄올과의 상호 반응에 따른 특정기질 선호영향을 모델에 적용하여 살펴보았다. 본 연구는 4단계의 실험으로 수행되었다. 1, 2, 3단계는 각기 다른 기질에 순화된 미생물들을 이용하여 프로피온산 1 g COD/L와 에탄올의 농도를 각각 0, 100, 200, 400과 1,000 mg/L로 주입하여 프로피온산과 에탄올의 혐기성 분해과정을 비교 연구하였으며, 4단계에서는 Glu-MCR과 HPr-MCR의 순화미생물의 혼합비를 조절하여 프로피온산 1 g COD/L를 주입하였을 때의 혐기성 분해를 연구하였다. 본 연구에서는 수정된 경쟁적 모델을 이용하여 특정기질 선호현상을 규명하였고, 에탄올 농도의 증가에 따라 아세트산 형성반응의 $K_{s2}$값의 증가와 메탄화 과정에서의 아세트산 생성 및 분해과정에 해당되는 $K_3$값이 일부 증가하는 결과를 얻을 수 있었다. 또한 순화미생물들에 따라 프로피온산과 에탄올의 분해에 미치는 영향이 다른 결과를 얻을 수 있었다.

  • PDF