• Title/Summary/Keyword: bio chip

Search Result 220, Processing Time 0.029 seconds

Inference of Genetic Regulatory Modules Using ChIP-on-chip and mRNA Expression Data

  • Cho, Hye-Young;Lee, Do-Heon
    • Bioinformatics and Biosystems
    • /
    • v.2 no.2
    • /
    • pp.62-65
    • /
    • 2007
  • We present here the strategy of data integration for inference of genetic regulatory modules. First, we construct all possible combinations of regulators of genes using chromatin-immunoprecipitation(ChIP)-chip data. Second, hierarchical clustering method is employed to analyze mRNA expression profiles. Third, integration method is applied to both of the data. Finally, we construct a genetic regulatory module which is involved in the function of ribosomal protein synthesis.

  • PDF

Development of DNA Chip Microarrayer

  • Yoon, Sung-Ho;Choi, Jong-Gil;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • A microarrayer system was developed mainly for manufacturing DNA chips. The 3-axis robot was designed to automatically collect samples from 96-or 384-well microtiter plates using up to 16 simultaneously moving pens and to deposit them on a surface-modified slide glass. This is followed by a wash/dry operation in a clean station. The cycle is repeated with a new set of samples, This system can deposit cDNA or oligonucleotides with spot intervals of $150{\;}\mu\textrm{m}$ and the spot size of $80\mu\textrm{m}$, thus allowing a high density DNA chip containing about 5,000 spots per $\textrm{cm}^2$. The entire procedure is controlled by the Visual C++ program that was written in our laboratory by using a personal computer with Pentium 100 CPU.

  • PDF

Characteristics of Bio-filter Support Media for the Odor Control (악취가스 제어를 위한 Bio-filter 담체의 특성 비교)

  • Lee, Hye-Sung;Chu, Duk-Sung;Jung, Joon-Oh
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • Bio-filtration utilizes microorganisms fixed to a porous medium to metabolize pollutants present in an air stream. The microorganisms grow in a bio-film on the surface of a medium or are suspended in the water phase surrounding the medium particles. Therefore, bio-filter support media play one of the most important key roles in bio-filtration of gas phase pollutants. To characterize and select the appropriate support media, gas adsorption capacity and microorganism immobilization were investigated in lab-scale experiments for the selected target support media which were compost I (compost from lab-scale process), compost II (compost from municipal facility), bark, wood chip, orchid stone and vermiculite. As odor materials, ammonia and trimethylamine were utilized. From the result of experiments, bark was superior to any other support media tested in adsorption capacity as much as 12.5 mg ammonia per 1 g bark. In trimethylamine adsorption, bark and wood chip showed a remarkable results of 21.1 and 14.1 mg/g respectively. On the other hand, microorganism fixation test determined by the count of nitrogen oxidizing microbes population, the compost II and wood chips showed the best results. Considering the characteristics of materials and the operating condition of the bio-filter, bark, wood chip, and compost II are applicable to the support media of bio-filter when they are appropriately blended on the basis of studying the media pH, packing porosity and moisture contents.

Nanoscale Protein Chip based on Electrical Detection

  • Choi, Jeong-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.18-18
    • /
    • 2005
  • Photoinduced electron transport process in nature such as photoelectric conversion and long-range electron transfer in photosynthetic organisms are known to occur not only very efficiently but also unidirectionally through the functional groups of biomolecules. The basic principles in the development of new functional devices can be inspired from the biological systems such as molecular recognition, electron transfer chain, or photosynthetic reaction center. By mimicking the organization of the biological system, molecular electronic devices can be realized $artificially^{1)}$. The nano-fabrication technology of biomolecules was applied to the development of nano-protein chip for simultaneously analyzing many kinds of proteins as a rapid tool for proteome research. The results showed that the self-assembled protein layer had an influence on the sensitivity of the fabricated bio-surface to the target molecules, which would give us a way to fabricate the nano-protein chip with high sensitivity. The results implicate that the biosurface fabrication using self-assembled protein molecules could be successfully applied to the construction of nanoscale bio-photodiode and nano-protein chip based on electrical detection.

  • PDF

Genomic Susceptibility Analysis for Atopy Disease Using Cord Blood DNA in a Small Cohort

  • Koh, Eun Jung;Kim, Seung Jun;Ahn, Jeong Jin;Yang, Jungeun;Oh, Moon Ju;Hwang, Seung Yong
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.304-308
    • /
    • 2018
  • Atopic disease is caused by a complex combination of environmental factors and genetic factors, and studies on influence of exposure to various environmental factors on atopic diseases are continuously reported. However, the exact cause of atopic dermatitis is not yet known. Our study was conducted to analyse the association of SNPs with the development of atopic disease in a small cohort. Samples were collected from the Mothers' and Children's Environmental Health (MOCEH) study and 192 cord blood DNA samples were used to identify incidence of atopy due to influence of exposure to environmental factors. Genetic elements were analysed using a precision medicine research (PMR) array designed with various SNPs for personalized medicine. Case-control analysis of atopy disease revealed 253 significant variants (p<0.0001) and SNPs on five genes (CARD11, ZNF365, KIF3A, DMRTA1, and SFMBT1) were variants identified in previous atopic studies. These results are important to confirm the genetic mutation that may lead to the onset of foetal atopy due to maternal exposure to harmful environmental factors. Our results also suggest that a small-scale genome-wide association analysis is beneficial to confirm specific variants as direct factors in the development of atopy.

Fabrication of Multi-layered Macroscopic Hydrogel Scaffold Composed of Multiple Components by Precise Control of UV Energy

  • Roh, Donghyeon;Choi, Woongsun;Kim, Junbeom;Yu, Hyun-Yong;Choi, Nakwon;Cho, Il-Joo
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.280-286
    • /
    • 2018
  • Hydrogel scaffolds composed of multiple components are promising platform in tissue engineering as a transplantation materials or artificial organs. Here, we present a new fabrication method for implementing multi-layered macroscopic hydrogel scaffold composed of multiple components by controlling height of hydrogel layer through precise control of ultraviolet (UV) energy density. Through the repetition of the photolithography process with energy control, we can form several layers of hydrogel with different height. We characterized UV energy-dependent profiles with single-layered PEGDA posts photocrosslinked by the modular methodology and examined the optical effect on the fabrication of multi-layered, macroscopic hydrogel structure. Finally, we successfully demonstrated the potential applicability of our approach by fabricating various macroscopic hydrogel constructs composed of multiple hydrogel layers.