Lab-on-a-chip for Genetic Diagnostics

유전자 진단을 위한 칩 위에 실험실

  • Published : 2000.11.01

Abstract

Keywords

References

  1. Dario, P., Carrozza, M. C., Benvenuto, A., and Menciassi, A., 'Micro-systems in Biomedical Applications,' J. Micromech. Microeng., Vol. 10, pp. 235-244, 2000 https://doi.org/10.1088/0960-1317/10/2/322
  2. Mastrangelo, C. H., Burns, M. A., and Burke, D. T., 'Microfabricated Devices for Genetic Diagnostics,' Proceedings of the IEEE, Vol. 86, pp. 1769-1787, 1998 https://doi.org/10.1109/5.704282
  3. Sanders G. H. W., Manz A., 'Chip-based Microsystems for Genomic and Proteomic Analysis,' Trends in Analytical Chemistry, Vol. 19, pp. 364-378, 2000 https://doi.org/10.1016/S0165-9936(00)00011-X
  4. Lipshutz, R.J., Fodor, S.P.A., Gingeras T.R., Lockhart, D.J., 'High density synthetic oligonucleotide arrays,' nature genetics supplement, Vol. 21, pp. 20-24,1999 https://doi.org/10.1038/4447
  5. http://www.affymetrix.com/
  6. Anderson, R. C, Bogdan, G. J., Barniv, Z., Dawes T. D., Winkler J., Roy, K., 'Microfluidic Biochemical Analysis System,' Transducers '97, International Conference on Solid-State Sensors and Actuators, pp. 477-480, 1997
  7. Edman, C.F., Raymond, D. E., Wu, D. J., Tu, E. G., Sosnowski, R. G., Butler, W. E., Nerenberg, M., Heller, M. J., 'Electric Field Directed Nucleic Acid Hybridization on Microchips,' Nucleic Acids Res., Vol. 25, pp. 4907-4914, 1998 https://doi.org/10.1093/nar/25.24.4907
  8. Sosnowski, R., Tu, E., Butler, W., O'Connell, J., and Heller, M., 'Rapid Determination of Single Base Mismatch Mutations in DNA Hybrids by Direct Electric Field Control,' Proc. Natl. Acad. Sci., Vol. 94, pp. 1119-1123, 1997 https://doi.org/10.1073/pnas.94.4.1119
  9. Figeys, D., Pinto D., 'Lab-on-a-chip : A Revolution in Biological and Medical Sciences,' Analytical Chemistry, Vol. 72, pp. 330A-335A, 2000
  10. Abramowitz S. 'DNA Analysis in Microfabricated Formats,' J. of Biomedical Microdevices, Vol. 1, pp. 107-112., 1999 https://doi.org/10.1023/A:1009992306940
  11. Service, R. F, 'Miniaturization Puts Chemical Plants Where You Want Them,' Science, Vol. 282, pp. 400-401, 1998 https://doi.org/10.1126/science.282.5388.400
  12. Northrup, M. A., Ching, M. T., White, R. M., and Watson, R.T., 'DNA amplification with a microfabricated reaction chamber,' IEEE Int. Conf. Solid-State Sens. Actuat., pp. 924-926, 1993
  13. Northhrup M. A. 'A miniature Analytical Instrument for Nucleic Acids Based on Micromachined Silicon Reaction Chambers,' Anal. Chem., Vol. 70, pp. 918-922, 1998 https://doi.org/10.1021/ac970486a
  14. Wilding, P., Shoffner M.A., and Kricka, L.J., 'PCR in Silicon microstructure,' Clin. Chem., Vol. 40, pp. 1815-1919, 1994
  15. Taylor, T. B., Winn-Deen, E. S., Picozza, E., Woudenberg, T. M. and Albin, M., ' Optimization of the performance of the polymerase Chain Reaction in Silicon-based Microstructures,' Nucleic Acids Reasearch, Vol. 25, pp. 3164-3168, 1997 https://doi.org/10.1093/nar/25.15.3164
  16. Kopp D.U., Mello, A. J., Manz, A., 'Chemical Amplification : Continuous-Flow PCR on a Chip,' Science, Vol. 280, pp. 1046-1048 https://doi.org/10.1126/science.280.5366.1046
  17. Cheng, J., Waters. L.C. Fortina, P., Hvichica, G., Jacobson, S.C., Ramsey, J.M., Kricka, L.J., and Wilding. P., 'Degenerate Oligonucleotide Primed-Polymerase Chain Reaction and Capillary Electrophorestic Analysis of Human DNA on Microchip-Based Devices,' Analytical Biochemistr, Vol. 257, pp. 101-106, 1998 https://doi.org/10.1006/abio.1997.2531
  18. Simpson, PC, Roach, D., Woolley, A.T., Thorsen, T., Johnston, R., Sensabaugh, G. F, Mathies, R. A., 'High-Throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates,' Proc. Natl., Acad. Sci. USA, Vol. 95, pp. 2256-2261, 1998 https://doi.org/10.1073/pnas.95.5.2256
  19. Jacobson, S. C, Moore, A. W., and Ramsey, J. M., 'Fused quartz substrates for microchip electrophoresis,' Anal. Chem., Vol. 67, pp. 2059-2063, 1995 https://doi.org/10.1021/ac00109a026
  20. Woolley, A.T., Hadley, D., Landre, P., deMello, A.J., Mathies, R. A., and Northrup, M. A., 'Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device,' Anal. Chem., Vol. 68, pp. 4081-4086, 1996 https://doi.org/10.1021/ac960718q
  21. Ibrahaim, M. S., Lofts, R. S., Jahrling, P.B., Henchal, E. A., Weedn, V. W, Northrup, M.A., and Belgrader, P., 'Real-Time Mircochip PCR for Detecting Single-Base Differences in Viral and Human DNA,' Anal. Chem., Vol. 70, pp. 2013-2017, 1998 https://doi.org/10.1021/ac971091u
  22. Man, P.F., Jones, D.K., Mastrangelo, C.H., 'Microfluidic plastic capillaries on silicon substrates : a new inexpensive technology for bioanalysis chips,' International Conference on Micro Electromechanical Systems (MEMS 97), pp. 311-316, 1997
  23. Handique, K., Gogoi, B. P., Burke, D. T., and Burns, M. A., 'Microfluidic flow control using selective hydrophobic patterning,' Proc. SPIE Micromachi. Conf. Vol. 3224, pp. 1856-1899, 1997 https://doi.org/10.1117/12.284515
  24. Webster, J. R. and Mastrangelo, C. H., 'Large-Volume integrated capillary electrophoresis stage fabricated using micromachining of plastics on silicon substrates,' IEEE Int. Conf. Solid-State Sens. Actuat., pp. 503-506, 1997 https://doi.org/10.1109/SENSOR.1997.613697
  25. Man, P.F., Mastrangelo, C. H., Burns, A., and Burke, D. T., 'Microfabricated capillary-driven stop valve and sample injector,' International Conference on Micro Electromechanical Systems (MEMS 98), pp. 45-50, 1997
  26. http://www.gamerabioscience.com/
  27. Steel, A.B., Heme, T.M, Tarlov, M.J, 'Electrochemical Quantitation of DNA Immobilized on Gold,' Anal. Chem., Vol. 70, pp. 4670-4677, 1998 https://doi.org/10.1021/ac980037q
  28. Kelley, S. O., Holmlin R. Erik, Stemp, E. D. A., Barton, J. K. 'Photoinduced Electron Transfer in Ethidium-Modified DNA Duplexes : Dependence on Distance and Base Stacking,' J. Am. Chem. Soc, Vol. 119, pp. 9861-9870, 1997 https://doi.org/10.1021/ja9714651
  29. Hashimoto, K., Ito, K., Ishimori, Y, 'Novel DNA Sensor for Electrochemical Gene Detection,' Analytica Chimica Acta, Vol. 286, pp.219-224, 1994 https://doi.org/10.1016/0003-2670(94)80163-0
  30. Napier, M. E., Loomis, C. R., Sistare, M. E, Kim, J., Eckhardt, A. E., and T. Holden, 'Probing Biomolecules Recognition with Electron Transfer : Electrochemical sensors for DNA Hybridization,' Bioconjugate Chem., Vol. 8, pp. 906-913, 1997 https://doi.org/10.1021/bc9701149
  31. Fritz J., Bailer M.K., Lang H.P., Rothuizen. H., Vettiger P., Meyer E., J. Guntherodt, Ch. Gerber, J.K. Gimzewski, 'Translating Biomolecular Recognition into Nanomechanics,' Science, Vol. 288, pp. 316-318, 2000 https://doi.org/10.1126/science.288.5464.316
  32. Proudnikov, D., Timofeev, E., and Mirzabekov, A., 'Immobilization of DNA in Polyacrylamide Gel for the Manufacture of DNA and DNA-Oligonucleotide Microchips,' Analytical Biochemistry, Vol. 259, pp. 34-41, 1998 https://doi.org/10.1006/abio.1998.2620
  33. Steel, A., Torres, Matt, Hartwell, J. Yu, Y., Ting, N., Hoke, G., Yang, H., 'The Flow-Thru Chip : A Three-Dimensional Biochip Platform,' Microarray Biochip Technology, pp. 87-117, Edited by Mark Schena, 2000 Bio Techniques Books, Natick, MA
  34. Michael, K. L., Taylor, L.C, Schultz, S. L., Walt, D. R., 'Randomly ordered addressable high-density Optical Sensor Arrays,' Anal. Chem., Vol. 70, pp. 1242-1248, 1998 https://doi.org/10.1021/ac971343r
  35. Okahata, Y., Kawase, M., Niikura, K., Ohtake, F., Furusawa, H., and Ebara, Y., 'Kinetic Measurements of DNA Hybridization on an Oligonucleotide-Immobilized 27 MHz Oqurtz Crystal Microbalance,' Anal. Chem., Vol. 70, pp. 1288-1296, 1998 https://doi.org/10.1021/ac970584w
  36. Little, D. P., Cornish, T. J., O'Donnell, M.J., Braun, A., Cotter, R. J., and Koster, Hubert, 'MALDI on a chip: Analysis of Arrays of Low-Femtomole to Subfemtomole Quantities of Syntehtic Oligonucleotides and DNA Diagnostic Products Dispensed by a Pieozoelectric Pipet,' Anal. Chem., Vol. 69, pp. 4540-4546, 1997 https://doi.org/10.1021/ac970758+