• 제목/요약/키워드: binomial approximation

검색결과 13건 처리시간 0.016초

Approximation of binomial Distribution via Dynamic Graphics

  • Lee, Kee-Won
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.821-830
    • /
    • 1999
  • In This paper we calculate the probabilities of binomial and Poisson distributions when n or${\mu}$ is large. Based on this calculation we consider the normal approximation to the binomial and binomial approximation to Poisson. We implement this approximation via CGI and dynamic graphs. These implementation are made available through the internet.

  • PDF

Krawtchouk Polynomial Approximation for Binomial Convolutions

  • Ha, Hyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • 제57권3호
    • /
    • pp.493-502
    • /
    • 2017
  • We propose an accurate approximation method via discrete Krawtchouk orthogonal polynomials to the distribution of a sum of independent but non-identically distributed binomial random variables. This approximation is a weighted binomial distribution with no need for continuity correction unlike commonly used density approximation methods such as saddlepoint, Gram-Charlier A type(GC), and Gaussian approximation methods. The accuracy obtained from the proposed approximation is compared with saddlepoint approximations applied by Eisinga et al. [4], which are the most accurate method among higher order asymptotic approximation methods. The numerical results show that the proposed approximation in general provide more accurate estimates over the entire range for the target probability mass function including the right-tail probabilities. In addition, the method is mathematically tractable and computationally easy to program.

실제포함확률을 이용한 초기하분포 모수의 근사신뢰구간 추정에 관한 모의실험 연구 (A simulation study for the approximate confidence intervals of hypergeometric parameter by using actual coverage probability)

  • 김대학
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권6호
    • /
    • pp.1175-1182
    • /
    • 2011
  • 본 연구는 초기하분포의 모수, 즉 성공의 확률에 대한 신뢰구간추정에 대하여 설펴보았다. 초기하분포의 성공의 확률에 대한 신뢰구간은 일반적으로 잘 알려져 있지 않으나 그 응용성과 활용성의 측면에서 신뢰구간의 추정은 상당히 중요하다. 본 논문에서는 초기하분포의 성공의 확률에 대한 정확신뢰구간과 이항분포와 정규분포에 의한 근사신뢰구간을 소개하고 여러 가지 모집단의 크기와 표본 수에 대하여, 그리고 몇 가지 관찰값에 대한 정확신뢰구간과 근사신뢰구간을 계산하고 소 표본의 경우에 모의실험을 통하여 실제포함확률의 측면에서 살펴보았다.

POSTERIOR COMPUTATION OF SURVIVAL MODEL WITH DISCRETE APPROXIMATION

  • Lee, Jae-Yong;Kwon, Yong-Chan
    • Journal of the Korean Statistical Society
    • /
    • 제36권2호
    • /
    • pp.321-333
    • /
    • 2007
  • In the proportional hazard model with the beta process prior, the posterior computation with the discrete approximation is considered. The time period of interest is partitioned by small intervals. On each partitioning interval, the likelihood is approximated by that of a binomial experiment and the beta process prior is by a beta distribution. Consequently, the posterior is approximated by that of many independent binomial model with beta priors. The analysis of the leukemia remission data is given as an example. It is illustrated that the length of the partitioning interval affects the posterior and one needs to be careful in choosing it.

On Confidence Interval for the Probability of Success

  • Sang-Joon Lee;M. T. Longnecker;Woochul Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제3권3호
    • /
    • pp.263-269
    • /
    • 1996
  • The somplest approximate confidence interval for the probability of success is the one based on the normal approximation to the binomial distribution, It is widely used in the introductory teaching, and various guidelines for its use with "large" sample have appeared in the literature. This paper suggests a guideline when to use it as an approximation to the exact confidence interval, and comparisons with existing guidelines are provided. provided.

  • PDF

이항분포의 정규근사에 대한 고찰 (A Study on Normal Approximation to the Binomial Distribution)

  • 장대흥
    • 응용통계연구
    • /
    • 제12권2호
    • /
    • pp.671-681
    • /
    • 1999
  • 이항분포의 정규근사는 중심극한정리의 한 예로서 자주 언급되는데 정규근사를 하기 위한 시행회수 n과 성공률 p에 대한 판정기준들이 다수 제시되고 있는 데, 본 논문은 이러한 판정기준들에 대하여 제약조건의 강도와 평균오차한계를 비교, 검토하였다.

  • PDF

Choosing between the Exact and the Approximate Confidence Intervals: For the Difference of Two Independent Binomial Proportions

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제16권2호
    • /
    • pp.363-372
    • /
    • 2009
  • The difference of two independent binomial proportions is frequently of interest in biomedical research. The interval estimation may be an important tool for the inferential problem. Many confidence intervals have been proposed. They can be classified into the class of exact confidence intervals or the class of approximate confidence intervals. Ore may prefer exact confidence interval s in that they guarantee the minimum coverage probability greater than the nominal confidence level. However, someone, for example Agresti and Coull (1998) claims that "approximation is better than exact." It seems that when sample size is large, the approximate interval is more preferable to the exact interval. However, the choice is not clear when sample, size is small. In this note, an exact confidence and an approximate confidence interval, which were recommended by Santner et al. (2007) and Lee (2006b), respectively, are compared in terms of the coverage probability and the expected length.

부품의 고장자료를 이용하여 직병렬 시스템의 신뢰도를 추정하는 방법 (Reliability Estimation of Series-Parallel Systems Using Component Failure Data)

  • 김경미
    • 산업공학
    • /
    • 제22권3호
    • /
    • pp.214-222
    • /
    • 2009
  • In the early design stage, system reliability must be estimated from life testing data at the component level. Previously, a point estimate of system reliability was obtained from the unbiased estimate of the component reliability after assuming that the number of failed components for a given time followed a binomial distribution. For deriving the confidence interval of system reliability, either the lognormal distribution or the normal approximation of the binomial distribution was assumed for the estimator of system reliability. In this paper, a new estimator is used for the component level reliability, which is biased but has a smaller mean square error than the previous one. We propose to use the beta distribution rather than the lognormal or approximated normal distribution for developing the confidence interval of the system reliability. A numerical example based on Monte Carlo simulation illustrates advantages of the proposed approach over the previous approach.

Effects on Regression Estimates under Misspecified Generalized Linear Mixed Models for Counts Data

  • Jeong, Kwang Mo
    • 응용통계연구
    • /
    • 제25권6호
    • /
    • pp.1037-1047
    • /
    • 2012
  • The generalized linear mixed model(GLMM) is widely used in fitting categorical responses of clustered data. In the numerical approximation of likelihood function the normality is assumed for the random effects distribution; subsequently, the commercial statistical packages also routinely fit GLMM under this normality assumption. We may also encounter departures from the distributional assumption on the response variable. It would be interesting to investigate the impact on the estimates of parameters under misspecification of distributions; however, there has been limited researche on these topics. We study the sensitivity or robustness of the maximum likelihood estimators(MLEs) of GLMM for counts data when the true underlying distribution is normal, gamma, exponential, and a mixture of two normal distributions. We also consider the effects on the MLEs when we fit Poisson-normal GLMM whereas the outcomes are generated from the negative binomial distribution with overdispersion. Through a small scale Monte Carlo study we check the empirical coverage probabilities of parameters and biases of MLEs of GLMM.

A Study on the Power Comparison between Logistic Regression and Offset Poisson Regression for Binary Data

  • Kim, Dae-Youb;Park, Heung-Sun
    • Communications for Statistical Applications and Methods
    • /
    • 제19권4호
    • /
    • pp.537-546
    • /
    • 2012
  • In this paper, for analyzing binary data, Poisson regression with offset and logistic regression are compared with respect to the power via simulations. Poisson distribution can be used as an approximation of binomial distribution when n is large and p is small; however, we investigate if the same conditions can be held for the power of significant tests between logistic regression and offset poisson regression. The result is that when offset size is large for rare events offset poisson regression has a similar power to logistic regression, but it has an acceptable power even with a moderate prevalence rate. However, with a small offset size (< 10), offset poisson regression should be used with caution for rare events or common events. These results would be good guidelines for users who want to use offset poisson regression models for binary data.