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Abstract

The difference of two independent binomial proportions is frequently of interest in biomedical research.
The interval estimation may be an important tool for the inferential problem. Many confidence intervals have
been proposed. They can be classified into the class of exact confidence intervals or the class of approximate
confidence intervals. One may prefer exact confidence intervals in that they guarantee the minimum coverage
probability greater than the nominal confidence level. However, someone, for example Agresti and Coull (1998)
claims that “approximation is better than exact.” It seems that when sample size is large, the approximate interval
is more preferable to the exact interval. However, the choice is not clear when sample size is small. In this note,
an exact confidence and an approximate confidence interval, which were recommended by Santner et al. (2007)
and Lee (2006b), respectively, are compared in terms of the coverage probability and the expected length.

Keywords: Exact confidence interval, approximate confidence interval, coverage probability, ex-
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1. Introduction

The interval estimation for the difference of two independent binomial proportions is often of prime
important in biology, medicine, and many other fields of scientific research. For instance, many
experiments in clinical trials are designed to compare the difference in proportions of responses to a
specific endpoint between a new treatment and an existing treatment. The interval estimation plays
key role in these statistical problems. Variety of estimation methods has been devised. They can
be classified into the approximate interval and the exact interval, but it seems that the approximate
method dominates the exact method when sample size is large.

The approximate confidence interval is based on the large sample property, and hence believed to
have poor characteristic in that the actual coverage probabilities are frequently and significantly less
than nominal level when sample size is small. It was a common sense in my literature review that
an approximate confidence interval should not be considered in the serious statistical problem with a
small sample. See Santner and Yamagami (1993), Newcombe (1998), and Santner et al. (2007).

The term, “exact” opposes to “approximate” and is originated from the definition of the confidence
set. In literatures, see Lehmann (1986) for example, a random set S (X) is called a confidence set at
confidence level 1 — a if

Pl6e SX)]=1—-¢c, forallfco. (1.1)
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A confidence interval satisfying (1.1) is called exact. Thus the exact confidence interval guarantees the
minimum coverage probability. However, because of the discreteness of underlying distribution, the
coverage probability oscillates unlike the continuous case. Thus, to guarantee the minimum coverage,
the confidence interval should be conservative. i.e., it should be unnecessarily wide. Because, wide
intervals are non-informative, one may not prefer the exact confidence interval.

Another drawback of the exact confidence interval is feasibility. Most popular statistical packages
provide only a few exact methods. Although StatXact provides the greatest scope for small sample
inference in discrete problems, its province is limited as well. For instance, for the difference of two
independent binomial proportions, Santner ef al. (2007) evaluated various exact confidence intervals
in terms of their coverage probability and expected length, and recommended the interval devised by
Coe and Tamhane (1993), but it is not incorporated in StatXact. Thus, one may have difficulty in
using proper exact methods. Even, the worst situation is when sample size is large. Usually exact -
methods require a heavy computational work, the computation is feasible only when sample size is
moderately large even in these days. Thus the comparison between two methods may be meaningless
when sample size is large.

The Wald interval using the maximum likelihood estimate of binomial parameter has been consid-
ered as a standard method for the interval estimations of binomial proportions. However, the erratic
behavior of the coverage probability of the Wald interval has been recognized in various literatures.
See for example, Blyth and Still (1983), Agresti and Coull (1998) and Brown et al. (2001). In partic-
ular, Brown er al. investigated the unsatisfactory coverage properties of the Wald interval in details.
However, some approximate confidence intervals work guite well even with a small sample. For ex-
ample, Agresti and Coull (1998) showed that an improved interval for the parameter of a binomial
distribution could be obtained by so-called “adding two successes and two failures” to the observed
counts and then using the standard method. This strategy works quiet well in various sampling de-
signs as well as in the 1-group design. For instance, Agresti and Caffo (2000) examined the interval
estimation for the difference of two binomial proportions, and concluded that the strategy performs
about as well as the best available methods in this 2-group design. Price and Bonett (2004) extended
the Agresti-Coull type interval for general k-group design. In addition, Lee (2006a), Lee (2006b) and
Lee (2007) provided the weighted Polya posterior confidence interval for the 1-group, 2-group and
k-group designs. It is believed that both the Agresti-Coull type and the weighted Polya posterior inter-
vals are comparable to the exact confidence interval in terms of the coverage probability when sample
size is smail. However, it was shown in Lee (2006a) and his subsequent papers that the weighted
Polya posterior-intervals outperformed the corresponding-Agresti-Coull type intervals.

Obviously, the choice of proper confidence interval is important for certain statistical problems.
For instance, Chan and Zhang (1999) gave an interesting example in a vaccine clinical trial to in-
vestigate whether a new manufacturing process provides improvement over the current process. The
preliminary data showed that the proportions of subjects responding to the vaccine were .944(17 sub-
jects out of 18) and .611(11 subjects out of 18) for the new and current processes, respectively. Since
the difference between two proportions was .333, it seemed that the new process gained noticeable im-
provement. However, the exact 95% exact confidence interval due to Santner and Snell (1980) yielded -
an interval of (-0.019, 0.630) indicating no significant improvement. Interestingly enough, applying
the weighted Polya posterior method to the same data, an interval of (0.056, 0.547) is obtained. Thus,
we can draw a different conclusion.

Both two estimates have defects. The actual coverage probability of Santner and Snell’s interval
is greater than .95, and hence the length of interval may be too wide. While the actual coverage
probability of the Polya posterior can be less than the nominal level, and hence the length of interval
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may not be proper.

The choice depends on our allowance for the coverage probability and the interval length. If
you think that the coverage probability should be at least greater than the nominal level for your
statistical problem regardless of interval length, an exact confidence interval is your choice. However,
Agresti and Coull (1998) argued that most researchers probably interpret the confidence coefficients
in terms of “average performance” rather than “worst possible performance.” That is, a more relevant
description of performance is the long-run percentage of times that the procedure is correct when
it is used repeatedly for a variety of data sets in various problems with possibly different parameter
values. If you agree with Agresti and Coull, and think that the interval length is important as far as the
coverage probability of an approximate interval is not significantly lower than the nominal level, than
an approximate confidence interval could be your choice. I believe that most researchers are between
two.

There may be a compromised loss for helping to choose a proper confidence interval. In this
note, I consider a loss or utility for judging the goodness of confidence intervals to help the choice of
proper interval, and compare two representative confidence intervals, one for the exact and one for the
approximate, in terms of the loss or utility.

2. Confidence Intervals
2.1. Exact confidence intervals

Suppose that X; ~ B(ny, p1) and X, ~ B(ny, p>) are two independent binomial random variables.
Many exact confidence intervals for A = p; — p, have been constructed by inverting the hypothesis
test for Hy : A = A" versus H, : A # A*, where A* € (=1, 1). That s, apply an exact size « test for each
A* to collect acceptance regions. Since the acceptance regions depend upon the nuisance parameter
p1, eliminate the p; effect on the acceptance regions somehow. The set of acceptance regions are used
to construct an exact (1 — @) X 100% confidence interval.

Various tests and various methods to eliminate the p; effect can be applied for the testing problem.
For example, Chan and Zhang (1999) used one-side exact test based on score statistics,

B By — A*
S = ———— B
VP11 = p1)/ny + po(1 — pa)/ma

where p; and p; for i = 1,2 are the maximum likelihood and the restricted maximum likelihood

estimates under the restriction p; — p; = A* of p;’s, respectively. The nuisance parameter p, is
eliminated toward conservatism. Agresti and Min (2001) used the same score statistics but applied
two-side exact with the similar method of eliminating the nuisance parameter.

Coe and Tamhane (1993) developed different approach for the exact confidence interval. They
used greedy heuristics to construct acceptance sets that contain as few points of sample values as
possible for the testing problem. Coe/Tamhane method partition the A-space = (-1, 1) into a finite
number of equi-spaced grid —1 < A_jy < A_pyy < -+ <0 = Ag < Ay < -+ < Ay <1, and then,
for each i, partition the pj-space [A;, 1] by 0 < pjy < -+ < pin, systematically about the midpoint
(I + Ay)/2. Given py = p;; and p» = A; — p;;, collect most probable sample points until the sum
of probabilities of the sample points is greater than | — . After some refinements of the collected
sample points, an exact (1 — @) x 100% confidence interval for A can be formed. You may refer Coe
and Tamhane (1993) or Santner ez al. (2007) for further detail of the refinements.

Santer and Yamagami (1993) used the same greedy heuristics, but the collection method for accep-
tance region is different from the Coe/Tamhane method. The Santner/Yamagami and Coe/Tamhane
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methods produce different systems of intervals with substantially different properties.

Santner et al. (2007) compared the four exact confidence intervals, Chan/Zhang(CZ), Agresti/Min
{AM), Santner/Yamagami(SY) and Coe/Tamhane(CT), and an approximate confidence interval (AS)
which is based on the score statistics, as proposed by Wilson (1927) for a single binomial proportion,
and is proposed by Miettinen and Nuriminen (1985). They recommended the CT because its expected
length is superior to other three exact intervals. Although the expected length of the AS is shorter than
that of the CT, the AS is excluded in their recommendation because it fails to achieve the nominal
coverage roughly 50% of 100 x 100 combinations of parameter values of {py, p»). In other words, the
coverage probability is of prime interest and conservative intervals are preferable in their comparison,
In this point of view, it is hard to recommend the approximate confidence interval.

Beside the conclusion, there may be rounding errors in the calculation of the CT interval. They
wrote that when n; = n, = 15, the coverage of CT intervals was less the nominal 90% in 36 of the
10,000 combinations. When n = ny = 30, there were 56 cases failed to achieve the nominal level.
These results are different from my calculations. On my calculations, the coverage probabilities of
the CT intervals were all greater than the nominal level. To confirm my calculations, I asked the
C++ program (available from the authors) implemented by the authors. It produced slightly different
confidence intervals from mine. Because the CT interval is exact, I concluded that my calculations
are correct. However, the rounding errors are not serious to affect their conclusions.

2.2. Approximate confidence intervals

Although the Wald interval is the well-known approximate confidence interval, various researchers
have shown that it behaves very poorly even with moderate sample sizes. The poor performance of
the Wald interval is not occurred by its length. In fact, when p;’s are near 0.5, it tends to be too wide,
but the coverage probabilities are significantly lower than the nominal level. Now it is well-known
that the Wald interval should not be used for a serious statistical problem especially when sample size
is small.

Many approximate confidence intervals have been proposed. Among them Newcombe (1998)
compared eleven methods, and recommended the AS with and without the continuity correction.
The continuity correction gives slightly better performance. However, Lee (2006b) showed that the -
weighted Polya posterior interval(WP) outperforms the AS in the closeness of coverage probability to
the nominal level and the expected length. In fact, he compared three approximate intervals including
the Agresti/Caffo(AC) due to Agresti and Caffo (2000) in terms of the coverage probability and the
expected length, and concluded that the WP is superior to the other two in both the closeness of
coverage probability and the expected length.

The WP interval is an Wald-like confidence interval and is given by

= p=py)  p - p2)

~ Ptz 2.1
(P — P =xz P P 2.1

MR

where #; = n; + 23/2/2 and j; = (X; + z§/2/4)/ﬁi fori = 1,2. The origin of the WP is due to Meeden
(1999). ;

It has long been known that for small sample sizes, when sampling from a skewed distribution, the
usual interval estimation of the mean covers the true values less often than their nominal level (Mee-
den, 1999). The situation does not much differ from the interval estimation of a binomial proportion
p. Most problems occur mainly when sample size is not large enough or when p is near 0 or 1. Many
authors have attempted to solve the problem, and one solution was given by Meeden. He showed that
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a modification of the Polya posterior, called weighted Polya posterior, gave interval estimators with
improved coverage properties for the interval estimation of the mean.

Lee (2006a) applied the weighted Polya posterior to the problem of interval estimation of a bino-
mial proportion, and showed that the weighted Polya posterior is eventually the posterior distribution
with a conjugate beta prior distribution. Thus, the Agresti-Coull interval might be considered as the
interval estimation based on the weighted Polya posterior. However, the Agresti-Coull interval is little
bit unnecessarily wide in the Bayesian perspective not only for the 1-group design but also for those
designs mentioned before. He also recognized that a better choice of the weight might be possible. In
fact, the Wilson interval discussed by Wilson (1927) was shown to have slightly superior performance
to the Agresti-Coull interval in the study of Brown et al. (2001). In this note, he adjusted the weight
so that the center of the interval is same that of the Wilson interval, and shorten the interval by the
Bayesian perspective. These two adjustments improved the performance in the 1-group design (Lee,
2006a), the 2-group design (Lee, 2006b), and the more general design (Lee, 2007). I believe that the
WP is one of the best available approximate confidence interval.

The main aim of this paper is to show that the WP is comparable to the exact confidence interval
in practice. For this purpose, I will compare the performance of the WP and the CT intervals.

3. The criterion for comparison

Let CIA(X;, X>) be a confidence interval due to method A. The usual criterions for judging A are its
coverage probability and expected length which are defined as

) 2

Calpr,p2) = Y, Y 1(A € Clx, x2) px, (01, 2)
x1=0 x,=0
and T
ny ny
ELA(p1, p2) = ) D 1en(Cl(x1, 22))px, xo (1, %2),
X]ZO XZIO

respectively, where 7 is the usual indicator function, len{(CI(x;, x,)) represents is the length of interval
of Cl(x1, x2), and py, x,(x1, x2) is the joint probability mass function of X; and X;.

When comparing between exact confidence intervals, the expected length is the main factor for
choosing proper exact confidence intervals. On the other hand, an approximate confidence interval is
good, if the coverage probabilities are as closed to the nominal level as possible, the Mean Absolute
Error(MAE) or the Mean Squared Error(MSE) of the coverage probabilities could be excellent crite-
rions for comparing between approximate confidence intervals. When we compare between an exact
and an approximate confidence intervals, the situation is slightly different.

Figure 1 shows the general pattern of the coverage probabilities of the two intervals when sample
size is small. Since the CT is an exact confidence interval, the coverage probabilities of the CT are
greater than the nominal 0.95, while the coverage probabilities of the WP oscillate around the nominal
level. On the exact side, the coverage probability is good at the sacrifice of the expected length, and
vice versa on the approximate side. It would be desirable to consider the two factors simultaneously
for fair comparison. Thus, I consider the following function to help for choosing between exact and
approximate confidence intervals.

L(A, A, p1, p2) = [(1 — @) = Ca(p1, p2)] + A X ELA(py, p2). 3.D
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(a) CT interval (b) WP interval

Figure 1: Coverage probabilities for the difference of two independent binomial proportions with the nominal
95% CT interval and WP interval, forn, = ny = 10.

L{A, A, p1, p2) tends to be small value when Ca(py, py) is large, but ELo(py, py) is small. Thus
it could be considered as an expected loss function, but is not a usual expected loss function in the
sense that it can theoretically have negative values. Note, however, that a linear combination of the
coverage probability and the expected length with a negative coefficient was considered as a risk for
various set estimation problems. In fact, (3.1) is a variant of (2.1) of Casella e al. (1994). Here, A is
the weight between the coverage probability and the expected length. A large value of A is favorable
to the approximate confidence intervals, while a small value forces to choose the exact confidence
interval. Since the first part of L(A, A, p, p2) can ranges from —a to 1 — « and the expected length is
in [0, 2], it is believed that A = 1/2 gives the fair weight for the coverage probability and the expected
length.

4. Results

For the comparison of the CT and the WP, seven sample size cases are considered. These include three
balanced cases {(n;,n2)|(5,5),(15, 15), (30, 30)}, and four unbalanced cases {(n;,7,){(15,5),(30,5),
(30, 15),(30,25)}. Although the cases that n;’s are greater than or equal to ny’s are considered, the
case ny is less than n, can be inferred from these results.

The confidence level considered in this comparison is 95%, since it is the most popular level of
confidence. Coverage probabilities, expected lengths and expected losses of 95% CT and WP were
calculated over 10,000 equally spaced (p1, p;) values in [0, 1] x [0, 1] for seven sample cases. Figure
2 and 3 demonstrate the distribution of them using Box-Percentile plots (Esty and Banfield, 2003).

It can be observed that the coverage probabilities of the WP are acceptable in the sense that only a
few coverage probabilities, 948 out of 10,000, less than 1%, are less than or equal to 0.92 even when
sample sizes are n) = n; = 5. In these sample sizes, the distribution of the coverage probabilities of
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Figure 2: Distributions of coverage probabilities, expected lengths and expected losses for CT and WP over
10,000 equally spaced (p,, p2) values in [0, 1] x [0, 1] (three balanced sample cases)

CT is near symmetric at around 0.975, but skewed to the nominal level as sample sizes are increasing.
That is, the CT is more conservative when sample sizes are small, and as a result, the expected length
and the expected loss are big. In view of the expected loss, the WP is preferable until the A is reduced
to 0.182. With this value of weight, the means of the expected loss of CT and WP are same.

On the other hand, when sample sizes are relatively large and balanced, for instance n; = ny = 30,
the distributions of expected losses of CT and WP are near identical. Thus, the expected loss does not
give much information for choosing a confidence interval. Note however, it takes too much time to
calculate the CT interval when sample size is large. In fact, I first implemented the CT interval by R
2.6.2. (2008), but the computing time was unendurable. The second implementation by C++ saved
much time, but I am still wondering whether the CT interval can be practically usable when sample
sizes are greater than or equal 30.
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Figure 3: Distributions of coverage probabilities, expected lengths and expected losses for CT and WP over
10,000 equally spaced (p., p,) values in [0, 1] x [0, 1] (four unbalanced sample cases)
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When sample sizes are extremely unbalanced, n; = 30,51, = 5 and n; = 30,1, = 15, the CT seems
to have better performance than the WP. Although the means of expected losses of the WP are slightly
smaller than those of the CT, the distributions of WP have long tails. Thus, one may prefer the CT to
the WP in these cases. If the unbalance is not sever, say n; = 30, n; = 25, they behave similarly to the
balanced case n; = ny = 30.

5. Conclusions

Based on the comparison of the distributions of the expected losses, I recommend the WP even when
sample sizes are small provided that the sample sizes are near balanced. It seems that the CT interval is
useful when sample sizes are small and the unbalance is severing. However, the choice is still depend
on your attitude toward the confidence level. If you agree on the interpretation of the confidence level
as “average performance” rather than “worst possible performance,” the recommendation would be
helpful for choosing a proper confidence interval.
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