• Title/Summary/Keyword: binding proteins

Search Result 1,465, Processing Time 0.028 seconds

Isolation of Proteins that Specifically Interact with the ATPase Domain of Mammalian ER Chaperone, BiP

  • Chung, Kyung-Tae;Lee, Tae-Ho;Kang, Gyong-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.192-198
    • /
    • 2003
  • BiP, immunoglobulin binding protein, is an ER homologue of Hsp70. However, unlit other Hsp70 proteins, regulatory protein(s) for BiP has not been identified. Here, we demo strafed the presence of potential regulatory proteins for BiP using a pull -down assay. Since BiP can bind any unfolded protein, only the ATPase domain of BiP was used for the pull -down assay in order to minimize nonspecific binding. The ATPase domain was cloned to produce recombinant protein, which was then conjugated to CNBr-activated agarose. The structural conformation and ATP hydrolysis activity of the recombinant ATPase domain were similar to those of the native protein, light proteins from metabolically labeled mouse plasmacytoma cells specifically bound to the recombinant ATPase protein. The binding of these proteins was inhibited by excess amounts of free ATPase protein, and was dependent on the presence of ATP. These proteins were eluted by ADP. Of these proteins, Grp170 and BiP where identified. while the other were not identified as known ER proteins, from Western blot analyses. The presence of the ATPase-binding proteins for BiP was first demonstrated in this study, and our data suggest similar regulatory machinery for BiP may exist in the ER, as found in prokaryotes and other cellular compartments.

Involvement of GTP-Binding Proteins in Stage-Specific Receptor-Mediated Endocytosis of Coelomic Fluid Proteins into Oocytes of Pseudopotamilla occelata (안점의 꽃갯지렁이 난포세포로 체강액 단백질의 단계특이적 유입을 위한 GTP-Binding Protein의 개입)

  • 남현정;강화선;이양림
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.292-298
    • /
    • 1996
  • Receptor-mediated endocytosis of coelomic fluid proteins (CP), yolk precursor proteins, appears to be regulated by multiple GTP-binding proteins during oogenesis of a polychaete, Pseudopotamilla occelata. Transport of 125 I-CP into the oocytes of intermediate size class, at which CP is the most actively transported, is enhanced by GTP but inhibited by GTP analogues, either GTPrS or GTP$\beta$S. The effects of GTP and GTPrS on the transport were also confirmed by tracing internalization of gold-labeled CP with transmission electron microscope. Internalization of gold-labeled CP into the yolk granules was enhanced by GTP but inhibited by GTPrS.

  • PDF

Application of THEMATICS to Non-Catalytic Ligand-Binding Proteins

  • Murga, Leonel F.;Ko, Jaeju;Ondrechen, Mary Jo
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.221-227
    • /
    • 2005
  • THEMATICS is a simple computational method for predicting functional sites in proteins. The method computes the theoretical titration curves of the ionizable residues of a protein using its 3D structure, determines the residues with perturbed, non-Henderson-Hasselbalch titration behavior, and identifies clusters of these perturbed residues in physical proximity. We have shown previously that this method is highly successful in predicting catalytic sites in enzymes. In the present study, we apply the method to non-catalytic ligand-binding proteins. It is shown that THEMATICS can predict non-catalytic binding sites. The success rate is better than 80 % for a set of 30 non-catalytic, ligand-binding proteins. The application of the method to Glutamine-binding protein from E. coli is discussed in detail.

  • PDF

Changes of Binding Ability of Milk-Hypersensitive Patients질 IgE to Gamma-Irradiated Milk Proteins (감마선 조사된 우유단백질에 대한 우유 알러지 환자의 IgE 결합능의 변화)

  • 조경환;육홍선;이주운;이수영;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.3
    • /
    • pp.505-509
    • /
    • 2001
  • This study was carried out to evaluate the application of food irradiation technology as a method for reducing milk allergies. Bovine $\alpha$-casein, $\beta$-casein, $textsc{k}$-casein, $\alpha$-lactalbumin(ALA), $\beta$-lactoglobulin (BLG) and serum albumin (BSA) were used as model allergens of milk proteins and the proten solution (2.0 mg/mL) with 0.01 M phosphate buffered saline (pH 7.4) was irradiated at 3, 5 and 10 kGy. Using milk-hypersensitive patients IgE (MHP-IgE), the changes of binding ability to irradiated proteins were observed by competitive indirect enzyme-linked immunosorbent assay (Ci-ELISA). Affinity of MHP-IgE to milk proteins was higher in ALA and BLG than that of other proteins. Standard curve to each non-irradiated protein could be made with MHP-IgE for quantifying milk allergens. Binding abilities of MHP-IgE to the irradiated proteins, however, decreased with different slopes of the standard curves. Sensitivity of gamma irradiation was higher in ALA and BLG than of other proteins. These results indicated that irradiation technology can be used to reduce the milk hypersensitivity.

  • PDF

Surface interactions between two of the main periodontal pathogens: Porphyromonas gingivalis and Tannerella forsythia

  • Zhu, Weidong;Lee, Seok-Woo
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.1
    • /
    • pp.2-9
    • /
    • 2016
  • Purpose: Porphyromonas gingivalis and Tannerella forsythia have been implicated as the major etiologic agents of periodontal disease. These two bacteria are frequently isolated together from the periodontal lesion, and it has been suggested that their interaction may increase each one's virulence potential. The purpose of this study was to identify proteins on the surface of these organisms that are involved in interbacterial binding. Methods: Biotin labeling of surface proteins of P. gingivalis and T. forsythia and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was performed to identify surface proteins involved in the coaggregating activity between P. gingivalis and T. forsythia. Results: It was found that three major T. forsythia proteins sized 161, 100, and 62 kDa were involved in binding to P. gingivalis, and P. gingivalis proteins sized 35, 32, and 26 kDa were involved in binding to T. forsythia cells. Conclusions: LC-MS/MS analysis identified one T. forsythia surface protein (TonB-linked outer membrane protein) involved in interbacterial binding to P. gingivalis. However, the nature of other T. forsythia and P. gingivalis surface proteins identified by biotin labeling could not be determined. Further analysis of these proteins will help elucidate the molecular mechanisms that mediate coaggregation between P. gingivalis and T. forsythia.

Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins

  • Chaikam, Vijay;Karlson, Dale T.
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs.

Temporal Changes of the Calcium-binding Proteins in the Medial Vestibular Nucleus following Unilateral Labyrinthectomy in Rats

  • Hong, Seok-Min;Lee, Jae-Hee;Yeo, Seung-Geun;Cha, Chang-Il;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.3
    • /
    • pp.95-99
    • /
    • 2008
  • Calcium ($Ca^{2+}$) is an intracellular second messenger associated with neuronal plasticity of the central nervous system. The calcium-binding proteins regulate the $Ca^{2+}$-mediated signals in the cytoplasm and buffer the calcium concentration. This study examined temporal changes of three calcium-binding proteins (calretinin, calbindin and parvalbumin) in the medial vestibular nucleus (MVN) during vestibular compensation after unilateral labyrinthectomy (UL) in rats. Rats underwent UL, and the changes in the expression of these proteins at 2, 6, 12, 24, 48, and 72 h were examined by immuno-fluorescence staining. The expression levels of all three proteins increased immediately after UL and returned to the control level by 48 h. However, the level of calretinin showed changes different from the other two proteins, being expressed at significantly higher level in the contralateral MVN than in the ipsilateral MVN 2 h after UL, whereas the other two proteins showed similar expression levels in both the ipsilateral and contralateral MVN. These results suggest that the calcium binding proteins have some protective activity against the increased $Ca^{2+}$ levels in the MVN. In particular, calretinin might be more responsive to neuronal activity than calbindin or parvalbumin.

N-terminal GNBP homology domain of Gram-negative binding protein 3 functions as a beta-1,3-glucan binding motif in Tenebrio molitor

  • Lee, Han-Na;Kwon, Hyun-Mi;Park, Ji-Won;Kurokawa, Kenji;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.506-510
    • /
    • 2009
  • The Toll signalling pathway in invertebrates is responsible for defense against Gram-positive bacteria and fungi, leading to the expression of antimicrobial peptides via NF-$\kappa$B-like transcription factors. Gram-negative binding protein 3 (GNBP3) detects beta-1,3-glucan, a fungal cell wall component, and activates a three step serine protease cascade for activation of the Toll signalling pathway. Here, we showed that the recombinant N-terminal domain of Tenebrio molitor GNBP3 bound to beta-1,3-glucan, but did not activate down-stream serine protease cascade in vitro. Reversely, the N-terminal domain blocked GNBP3-mediated serine protease cascade activation in vitro and also inhibited beta-1,3-glucan-mediated antimicrobial peptide induction in Tenebrio molitor larvae. These results suggest that the N-terminal GNBP homology domain of GNBP3 functions as a beta-1,3-glucan binding domain and the C-terminal domain of GNBP3 may be required for the recruitment of immediate down-stream serine protease zymogen during Toll signalling pathway activation.

Recent Advances in Structural Studies of Antifreeze Proteins (구조 생물학을 이용한 Antifreeze protein의 최근 연구동향)

  • Lee, Jun-Hyuck;Lee, Sung-Gu;Kim, Hak-Jun
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.159-169
    • /
    • 2011
  • Antifreeze proteins (AFPs) have ice binding affinity, depress freezing temperature and inhibit ice recystallization which protect cellular membranes in polar organisms. Recent structural studies of antifreeze proteins have significantly expanded our understanding of the structure-function relationship and ice crystal growth inhibition. Although AFPs (Type I-IV AFP from fish, insect AFP and Plant AFP) have completely different fold and no sequence homology, they share a common feature of their surface area for ice binding property. The conserved ice-binding sites are relatively flat and hydrophobic. For example, Type I AFP has an amphipathic, single ${\alpha}$-helix and has regularly spaced Thr-Ala residues which make direct interaction with oxygen atoms of ice crystals. Unlike Type I AFP, Type II and III AFP are compact globular proteins that contain a flat ice-binding patch on the surface. Type II and Type III AFP show a remarkable structural similarity with the sugar binding lectin protein and C-terminal domain of sialic acid synthase, respectively. Type IV is assumed to form a four-helix bundle which has sequence similarity with apolipoprotein. The results of our modeling suggest an ice-binding induced structural change of Type IV AFP. Insect AFP has ${\beta}$-helical structure with a regular array of Thr-X-Thr motif. Threonine residues of each Thr-X-Thr motif fit well into the ice crystal lattice and provide a good surface-surface complementarity. This review focuses on the structural characteristics and details of the ice-binding mechanism of antifreeze proteins.

A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins

  • Lee, Dong-Hwa;Ha, Ji-Hyang;Kim, Yul;Jang, Mi;Park, Sung Jean;Yoon, Ho Sup;Kim, Eun-Hee;Bae, Kwang-Hee;Park, Byoung Chul;Park, Sung Goo;Yi, Gwan-Su;Chi, Seung-Wook
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.264-269
    • /
    • 2014
  • The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-down assays and NMR experiments demonstrated the direct binding of the p53DBD with Bcl-w, Mcl-1, and Bcl-2. Further, NMR chemical shift perturbation data showed that Bcl-w and Mcl-1 bind to the positively charged DNA-binding surface of p53DBD. Noticeably, the refined structural models of the complexes between p53DBD and Bcl-w, Mcl-1, and Bcl-2 showed that the binding mode of p53DBD is highly conserved among the anti-apoptotic Bcl-2 family proteins. Furthermore, the chemical shift perturbations on Bcl-w, Mcl-1, and Bcl-2 induced by p53DBD binding occurred not only at the p53DBD-binding acidic region but also at the BH3 peptide-binding pocket, which suggests an allosteric conformational change similar to that observed in Bcl-$X_L$. Taken altogether, our results revealed a structural basis for a conserved binding mechanism between p53DBD and the anti-apoptotic Bcl-2 family proteins, which shed light on to the molecular understanding of the transcription-independent apoptosis pathway of p53.