Browse > Article
http://dx.doi.org/10.4217/OPR.2011.33.2.159

Recent Advances in Structural Studies of Antifreeze Proteins  

Lee, Jun-Hyuck (Korea Polar Research Institute, KORDI)
Lee, Sung-Gu (Korea Polar Research Institute, KORDI)
Kim, Hak-Jun (Korea Polar Research Institute, KORDI)
Publication Information
Ocean and Polar Research / v.33, no.2, 2011 , pp. 159-169 More about this Journal
Abstract
Antifreeze proteins (AFPs) have ice binding affinity, depress freezing temperature and inhibit ice recystallization which protect cellular membranes in polar organisms. Recent structural studies of antifreeze proteins have significantly expanded our understanding of the structure-function relationship and ice crystal growth inhibition. Although AFPs (Type I-IV AFP from fish, insect AFP and Plant AFP) have completely different fold and no sequence homology, they share a common feature of their surface area for ice binding property. The conserved ice-binding sites are relatively flat and hydrophobic. For example, Type I AFP has an amphipathic, single ${\alpha}$-helix and has regularly spaced Thr-Ala residues which make direct interaction with oxygen atoms of ice crystals. Unlike Type I AFP, Type II and III AFP are compact globular proteins that contain a flat ice-binding patch on the surface. Type II and Type III AFP show a remarkable structural similarity with the sugar binding lectin protein and C-terminal domain of sialic acid synthase, respectively. Type IV is assumed to form a four-helix bundle which has sequence similarity with apolipoprotein. The results of our modeling suggest an ice-binding induced structural change of Type IV AFP. Insect AFP has ${\beta}$-helical structure with a regular array of Thr-X-Thr motif. Threonine residues of each Thr-X-Thr motif fit well into the ice crystal lattice and provide a good surface-surface complementarity. This review focuses on the structural characteristics and details of the ice-binding mechanism of antifreeze proteins.
Keywords
antifreeze protein; ice binding protein; NMR; structural biology; X-ray crystallography;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Yamashita Y, Miura R, Takemoto Y, Tsuda S, Kawahara H, Obata H (2003) Type II antifreeze protein from a midlatitude freshwater fish, Japanese smelt (Hypomesus nipponensis). Biosci Biotechnol Biochem 67:461-466   DOI   ScienceOn
2 Zhao Z, Deng G, Lui Q, Laursen RA (1998) Cloning and sequencing of cDNA encoding the LS-12 antifreeze protein in the longhorn sculpin, Myoxocephalus octodecimspinosis. Biochim Biophys Acta 1382:177-180   DOI   ScienceOn
3 Nishimiya Y, Kondo H, Takamichi M, Sugimoto H, Suzuki M, Miura A, Tsuda S (2008) Crystal structure and mutational analysis of $Ca^{2+}-independent$ type II antifreeze protein from longsnout poacher, Brachyopsis rostratus. J Mol Biol 382:734-746   DOI   ScienceOn
4 Patel SN, Graether SP (2010) Structures and ice-binding faces of the alanine-rich type I antifreeze proteins. Biochem Cell Biol 88:223-229   DOI
5 Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63-70   DOI   ScienceOn
6 Sicheri F, Yang DS (1995) Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375:427-431   DOI   ScienceOn
7 Sonnichsen FD, DeLuca CI, Davies PL, Sykes BD (1996) Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetic of the protein-ice interaction. Structure 4:1325-1337   DOI   ScienceOn
8 Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lillford P, Telford J, Holt C, Bowles D (1998) A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science 282:115-117   DOI   ScienceOn
9 Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277:394-403   DOI   ScienceOn
10 Yamashita Y, Nakamura N, Omiya K, Nishikawa J, Kawahara H, Obata H (2002) Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci Biotech Biochem 66:239-247   DOI   ScienceOn
11 Hamada T, Ito Y, Abe T, Hayashi F, Güntert P, Inoue M, Kigawa T, Terada T, Shirouzu M, Yoshida M, Tanaka A, Sugano S, Yokoyama S, Hirota H (2006) Solution structure of the antifreeze-like domain of human sialic acid synthase. Protein Sci 15:1010-1016   DOI   ScienceOn
12 Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 27:101-106   DOI   ScienceOn
13 Jia Z, DeLuca CI, Chao H, Davies PL (1996) Structural basis for the binding of a globular antifreeze protein to ice. Nature 384:285-288   DOI   ScienceOn
14 Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363-371   DOI   ScienceOn
15 Lee JK, Park KS, Park S, Park H, Song YH, Kang SH, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60:222-228   DOI   ScienceOn
16 Leinala EK, Davies PL, Jia Z (2002) Crystal structure of beta-helical antifreeze protein points to a general ice binding model. Structure 10:619-627   DOI   ScienceOn
17 Liou YC, Tocilj A, Davies PL, Jia Z (2000) Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature 406:322-324   DOI   ScienceOn
18 Liu Y, Li Z, Lin Q, Kosinski J, Seetharaman J, Bujnicki JM, Sivaraman J, Hew CL (2007) Structure and evolutionary origin of Ca(2+)-dependent herring type II antifreeze protein. PLoS One 2:e548. doi: 10.1371/journal.pone.0000548   DOI
19 Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Philos Trans Roy Soc B 357:927-935   DOI   ScienceOn
20 Muryoi N, Sato M, Kaneko S, Kawahara H, Obata H, Yaish MW, Griffith M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 186:5661-5671   DOI   ScienceOn
21 DeLano W (2002) The PyMOL Molecular Graphics System, DeLano Scientific LLC, San Carlos, CA. http://www.pymol.org/. Accessed 11 Aug 2010
22 Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry, J, Davies PL (2008) A $Ca^{2+}-dependent$ bacterial antifreeze protein domain has a novel betahelical ice-binding fold. Biochem J 411:171-180   DOI   ScienceOn
23 Gauthier SY, Scotter AJ, Lin FH, Baardsnes J, Fletcher GL, Davies PL (2008) A re-evaluation of the role of type IV antifreeze protein. Cryobiology 57:292-296   DOI   ScienceOn
24 Graether SP, Sykes BD (2004) Cold survival in freezeintolerant insects: the structure and function of betahelical antifreeze proteins. Eur J Biochem 271: 3285-3296   DOI   ScienceOn
25 Graether SP, Kuiper MJ, Gagne SM, Walker VK, Jia Z, Sykes BD, Davies PL (2000) Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406:325-328   DOI   ScienceOn
26 Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399-405   DOI   ScienceOn
27 Atici O, Nalbantoglu B (2003) Antifreeze proteins in higher plants. Phytochemistry 64:1187-1196   DOI   ScienceOn
28 Gronwald W, Loewen MC, Lix B, Daugulis AJ, Sönnichsen FD, Davies PL, Sykes BD (1998) The solution structure of type II antifreeze protein reveals a new member of the lectin family. Biochemistry 37:4712-4721   DOI   ScienceOn
29 Gwak IG, Jung WS, Kim HJ, Kang SH, Jin E (2010) Antifreeze Protein in Antarctic Marine Diatom, Chaetoceros neogracile. Mar Biotechnol 12:630-639   DOI   ScienceOn
30 Ajees A, Anantharamaiah GM, Mishra VK, Hussain M, Murthy HM (2006) Crystal structure of human apolipoprotein A-I: insights into its protective effect against cardiovascular diseases. Proc Natl Acad Sci USA 103:2126-2131   DOI   ScienceOn
31 D'Amico S, Collins T, Marx J, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385-389   DOI   ScienceOn
32 Davies PL, Sykes BD (1997) Antifreeze proteins. Curr Opin Struct Biol 7:828-834   DOI   ScienceOn