• Title/Summary/Keyword: binding number

Search Result 528, Processing Time 0.029 seconds

RNA Binding Protein-Mediated Post-Transcriptional Gene Regulation in Medulloblastoma

  • Bish, Rebecca;Vogel, Christine
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.357-364
    • /
    • 2014
  • Medulloblastoma, the most common malignant brain tumor in children, is a disease whose mechanisms are now beginning to be uncovered by high-throughput studies of somatic mutations, mRNA expression patterns, and epigenetic profiles of patient tumors. One emerging theme from studies that sequenced the tumor genomes of large cohorts of medulloblastoma patients is frequent mutation of RNA binding proteins. Proteins which bind multiple RNA targets can act as master regulators of gene expression at the post-transcriptional level to co-ordinate cellular processes and alter the phenotype of the cell. Identification of the target genes of RNA binding proteins may highlight essential pathways of medulloblastomagenesis that cannot be detected by study of transcriptomics alone. Furthermore, a subset of RNA binding proteins are attractive drug targets. For example, compounds that are under development as anti-viral targets due to their ability to inhibit RNA helicases could also be tested in novel approaches to medulloblastoma therapy by targeting key RNA binding proteins. In this review, we discuss a number of RNA binding proteins, including Musashi1 (MSI1), DEAD (Asp-Glu-Ala-Asp) box helicase 3 X-linked (DDX3X), DDX31, and cell division cycle and apoptosis regulator 1 (CCAR1), which play potentially critical roles in the growth and/or maintenance of medulloblastoma.

Effect of Ginseng Saponin on the Activity, Phosphorylation, $[^3H]$Ouabain Binding of Purified$Na^+$ $K^+$-ATPase Isolated from the Outer Medulla of Sheep Kidney (인삼 Saponin이 양신장에서 정제한 $Na^+$ $K^+$-ATPase의 활성, 인산화 및 $[^3H]$Ouabain결합에 미치는 영향)

  • 이신웅;이정수;진갑덕
    • YAKHAK HOEJI
    • /
    • v.29 no.2
    • /
    • pp.76-89
    • /
    • 1985
  • The effects of ginseng saponin on the activity, phosphorylation, [$^{3}$H] ouabain binding and light scattering (disruption) of purified $Na^{+}$ ,$K^{+}$ -ATPase isolated from the outer medulla of sheep kidney were compared to those of gypsophila saponin, sodium dodecylsulfate (SDS), and Triton X-100 on the same parameters. $Na^{+}$ , $K^{+}$ -ATPase activity, phosphorylation, and [$^{3}H$] ouabain binding were inhibited by ginseng saponin (triol>total>diol), SDS, or Triton X-100, but increased by gypsophila saponin. Low doses of ginseng saponin (3.mu.g saponin/.mu.g protein) decreased phosphorylation sites and ouabain binding site concentration (Bmax) without any change of turnover number and affinity for ouabain binding which were decreased by high dose of ginseng saponin (over 10.mu.g saponin/.mu.g protein), SDS or Triton X-100. On the other hand, gypsophila saponin increased the affinity without any change of Bmax for ouabain binding. Inhibition of $Na^{+}$ ,$K^{+}$ -ATPase activity by ginseng saponin and SDS or Triton X-100 appeared before and after decrease in light scattering, respectively. These data suggest that ginseng saponins (total, diol, triol saponin) inhibit $Na^{+}$ , $K^{+}$ -ATPase activity by specific direct and general detergent action at low and high concentrations, respectively, and this inhibitory action of ginseng sapornin to $Na^{+}$ , $K^{+}$ -ATPase is not general action of all saponins.

  • PDF

The Study on the Enhanced User Authentication using the Combination of Individual Attribute (개인속성 정보의 결합을 통한 강화된 인증방안에 대한 연구)

  • Kim, Tae Kyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.83-89
    • /
    • 2014
  • An increasing number of children are now using the Internet. They are starting at a younger age, using a variety of devices and spending more time online. It becomes an important problem to protect the children in online environment. The Internet can be a major channel for their education, creativity and self-expression. However, it also carries a spectrum of risks to which children are more vulnerable than adults. In order to solve these problems, we suggested a binding model of user attributes for enhanced user authentication. We also studied the requirements and prerequisites of a binding model of user attributes. In this paper we described the architecture of binding model of user attributes and showed the effectiveness of the suggested model using simulation. This model can be utilized to enhanced user authentication and service authorization.

Effects of Age on Selective Antagonist Binding to Muscarinic Receptors in Rat Striatum

  • Kim, Hwa-Jung;Lee, Sun-Hyoung;Molly H. Weiler
    • Biomolecules & Therapeutics
    • /
    • v.6 no.4
    • /
    • pp.337-344
    • /
    • 1998
  • The objective of the present study was to investigate the effect of senescence on the binding properties of muscarinic receptors in the neostriatum of young (3 months), middle-aged (18 months) and aged (33 months) male Fischer 344 x Brown Norway hybrid rats by employing direct binding of selective radiolabeled antagonists. Using the selective M, muscarinic receptor antagonist, $[^3H]$AF-DX384, as the ligand, no significant difference in the maximal receptor density (Bmax) was observed in the neostriatum among any age-groups. In contrast, with the selective M, receptor antagonist, $[^3H]$4-DAMP, a significant increase in the number of muscarinic receptors was observed in neostriatal membrane fractions prepared from the aged animals relative to that observed in the young rats. For each ligand there was no age-related change in its affinity (Kd) for the muscarinic receptors. These results indicate that the observed age-related changes in the muscarinic receptor density may not be necessarily decremuntal and depend upon the muscarinic receptor subtype examined.

  • PDF

Influence of Phenobarbital on the Circadian Rhythm of Opiate Receptor in Rat Brain (백서의 뇌내 Opiate 수용체의 일중 변동에 미치는 Phenobarbital의 영향)

  • Park, Yeoung-Gul;Kim, Kee-Won;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.128-141
    • /
    • 1985
  • To investigate the influence of phenobarbital sodium on the action of morphine and on the diurnal rhythms of both opiate receptor binding and ${\beta}-endorphin$ contents, the amount of specifically bound $(^3H)$-morphine and immunoreactive ${\beta}-endorphin$ were measured in the midbrain of phenobarbital-treated rats at 4h intervals in a day. Rats were housed and adapted to a controlled cycle of either 12 h light-12 h dark or 24 h constant dark. After 3 weeks of adaptation, 0.5 ml of physiological saline or phenobarbital sodium (20mg/kg/day, i.p.) were administered twice a day for 2 weeks. Highly significant diurnal rhythms of opiate receptor binding and ${\beta}-endorphin$ were present in rat midbrain. In control group, the peak of maximum $(^3H)$-morphine binding was observed at 22:00 h, whereas the peak of ${\beta}-endorphin$ content was found at 06:00 h. Even in the absence of time cues these diurnal rhythms persisted, but they were highly modified with respect to the wave form as well as differences in the timing of peak and nadir. In the phenobarbital-treated group, these diurnal rhythms were also modified in shape, phase and amplitude, as well as in timing of peak and nadir. In this group, 24 h mean of opiate receptor binding was significantly decreased, while the 24 h mean level of ${\beta}-endorphin$ content was highly increased. However, Kd values in all experimental groups did not change. This indicates that differences in binding were not due to changes in the affinity, but in the number of binding sites. Statistical analysis of regression line indicates that changes of receptor binding were closely correlated with the changes of ${\beta}-endorphin$ content. These results suggest that phenobarbital may influence the action of morphine by changing the number of opiate receptors and that the modification of diurnal rhythm of opiate receptor by the agent is possibly due to changes of ${\beta}-endorphin$ content.

  • PDF

Knowledge based Genetic Algorithm for the Prediction of Peptides binding to HLA alleles common in Koreans (지식기반 유전자알고리즘을 이용한 한국인 빈발 HLA 대립유전자에 대한 결합 펩타이드 예측)

  • Cho, Yeon-Jin;Oh, Heung-Bum;Kim, Hyeon-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.13 no.4
    • /
    • pp.45-52
    • /
    • 2012
  • T cells induce immune responses and thereby eliminate infected micro-organisms when peptides from the microbial proteins are bound to HLAs in the host cell surfaces, It is known that the more stable the binding of peptide to HLA is, the stronger the T cell response gets to remove more effectively the source of infection. Accordingly, if peptides (HLA binder) which can be bound stably to a certain HLA are found, those peptieds are utilized to the development of peptide vaccine to prevent infectious diseases or even to cancer. However, HLA is highly polymorphic so that HLA has a large number of alleles with some frequencies even in one population. Therefore, it is very inefficient to find the peptides stably bound to a number of HLAs by testing random possible peptides for all the various alleles frequent in the population. In order to solve this problem, computational methods have recently been developed to predict peptides which are stably bound to a certain HLA. These methods could markedly decrease the number of candidate peptides to be examined by biological experiments. Accordingly, this paper not only introduces a method of machine learning to predict peptides binding to an HLA, but also suggests a new prediction model so called 'knowledge-based genetic algorithm' that has never been tried for HLA binding peptide prediction. Although based on genetic algorithm (GA). it showed more enhanced performance than GA by incorporating expert knowledge in the process of the algorithm. Furthermore, it could extract rules predicting the binding peptide of the HLA alleles common in Koreans.

Nucleotide and Deduced Amino Acid Sequences of Rat Myosin Binding Protein H (MyBP-H)

  • Jung, Jae-Hoon;Oh, Ji-Hyun;Lee, Kyung-Lim
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.712-717
    • /
    • 1998
  • The complete nucleotide sequence of the cDNA clone encoding rat skeletal muscle myosin- binding protein H (MyBP-H) was determined and amino acid sequence was deduced from the nucleotide sequence (GenBank accession number AF077338). The full-length cDNA of 1782 base pairs(bp) contains a single open reading frame of 1454 bp encoding a rat MyBP-H protein of the predicted molecular mass 52.7kDa and includes the common consensus 1CA__TG' protein binding motif. The cDNA sequence of rat MyBP-H show 92%, 84% and 41% homology with those of mouse, human and chicken, respectively. The protein contains tandem internal motifs array (-FN III-Ig C2-FN III- Ig C2-) in the C-terminal region which resembles to the immunoglobulin superfamily C2 and fibronectin type III motifs. The amino acid sequence of the C-terminal Ig C2 was highly conserved among MyBPs family and other thick filament binding proteins, suggesting that the C-terminal Ig C2 might play an important role in its function. All proteins belonging to MyBP-H member contains `RKPS` sequence which is assumed to be cAMP- and cGMP-dependent protein kinase A phosphorylation site. Computer analysis of the primary sequence of rat MyBP-H predicted 11 protein kinase C (PKC)phosphorylation site, 7 casein kinase II (CK2) phosphorylation site and 4N-myristoylation site.

  • PDF

A Dynamic Hardware Allocation and Binding Algorithm for SOC Design Automation (SOC 설계 자동화를 위한 동적인 하드웨어 할당 및 바인딩 알고리즘)

  • Eom, Kyung-Min;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.85-93
    • /
    • 2010
  • This paper proposes a new dynamic hardware allocation and binding algorithm of a simultaneous allocation and binding for SOC design automation. The proposed algorithm works on scheduled input graph and simultaneously allocates binds functional units, interconnections and registers by considering interdependency between operations and storage elements in each control step, in order to share registers and interconnections connected to functional units, as much as possible. This paper shows the effectiveness of the proposed algorithm by comparing experiments to determine number of function unit in advance or by comparing separated executing allocation and binding of existing system.

Esterified-Glucomannan in Broiler Chicken Diets-Contaminated with Aflatoxin, Ochratoxin and T-2 Toxin: Evaluation of its Binding Ability (in vitro) and Efficacy as Immunomodulator

  • Raju, M.V.L.N.;Devegowda, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.1051-1056
    • /
    • 2002
  • In vitro binding efficacy of esterified glucomannan (E-GM) (0.1%) on aflatoxin B1 (AF) (300 ppb), ochratoxin A (OA) (2 ppm) and T-2 toxin (T-2) (3 ppm), when present alone or in combination, was evaluated in toxin-contaminated feed at pH 4.5 and 6.5. Esterified glucomannan showed significantly (p<0.01) higher binding with AF (81.6%), whereas those recorded with T-2 (27.8%) and OA (25.6%) were moderate. Binding of each toxin decreased as the number of toxins in feed increased. pH of medium showed no effect on mycotoxin binding ability of E-GM. A $2{\times}2{\times}2{\times}2$ factorial experiment of 5 week duration was conducted to study the effects of two dietary levels each of AF (0 and 300 ppb), OA (0 and 2 ppm), T-2 (0 and 3 ppm ) and E-GM (0 and 0.1%) on the immune competence of a total of 960 day-old commercial broilers. Reductions in size of thymus (by AF and T-2) and bursa (by AF) and antibody titers against Newcastle disease and Infectious Bursal disease (by all the toxins) were noted. Additive and antagonistic interactions were seen among the toxins on certain parameters. Esterified glucomannan significantly (p<0.01) improved antibody titers and weights of bursa ofFabricius and thymus indicating its counteracting efficacy against immunosuppression in mycotoxicosis of multiple origin.

Effects of Thyroid Hormone on Pteroylpolyglutamate Chain Length and the Binding Activity of Folate Binding Protein in Rat Liver (갑상선 호르몬이 흰쥐 간세포내 엽산의 Polyglutamate 직쇄분포와 세포질 엽산 결합단백질의 결합성에 미치는 영향)

  • 민혜선
    • Journal of Nutrition and Health
    • /
    • v.32 no.4
    • /
    • pp.369-375
    • /
    • 1999
  • Hyperthroidism in known to alter the activity of a number of enzymes involved in the catabolism of histidine to CO2. 10-Formyltetrahydrofolate dehydrogenase(EC 1.5, 1.6, 10-formyl-THE dehydrogenase) catalyzes the NADP-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. In previous studies, 10-formyl-THF dehydrogenase purified from rat and pig liver was coidentified with the cytosolic folate-binding protein. In this study, we investigated the effects of feeding thyroid powder (TP) and thiouracil(TU) on the folate-binding properties of 10-formyl-THE dehydrogenase, the uptake of an injected dose of [3H] folate, and the metabolism of labeled folate to pteroylopoly-${\gamma}$-glutamate in rat liver. The initial hepatic uptake(24hr) of the labeled folate dose was higher in TU-rats and slightly higher in TP-rats in controls. With longer time periods, decreased hepatic uptake of labeled folate was observed in TP-animals compared to euthroid animals, and high levels of hepatic uptake of labeled folate were maintained in TU-animals. This data shows that high levels of thyroid hormone decreased the retention of folate in rat liver. Folate polygutamate chain length was shorter in TU-rats than controls, which suggests that thyroid states do not affect the ability to synthesize pteroylpolyglutamates and that folate polyglutamate might be modulated by altered folate pool size. The ability of 10-formyl-THE dehydrogenase to bind folate in rat liver was similar in both TP-and TU-rats although dehydrogenase activity was changed by thyroid sates.

  • PDF