• Title/Summary/Keyword: binary tree

Search Result 297, Processing Time 0.034 seconds

About fully Polynomial Approximability of the Generalized Knapsack Problem (일반배낭문제의 완전다항시간근사해법군의 존재조건)

  • 홍성필;박범환
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.4
    • /
    • pp.191-198
    • /
    • 2003
  • The generalized knapsack problem or gknap is the combinatorial optimization problem of optimizing a nonnegative linear function over the integral hull of the intersection of a polynomially separable 0-1 polytope and a knapsack constraint. The knapsack, the restricted shortest path, and the constrained spanning tree problem are a partial list of gknap. More interesting1y, all the problem that are known to have a fully polynomial approximation scheme, or FPTAS are gknap. We establish some necessary and sufficient conditions for a gknap to admit an FPTAS. To do so, we recapture the standard scaling and approximate binary search techniques in the framework of gknap. This also enables us to find a weaker sufficient condition than the strong NP-hardness that a gknap does not have an FPTAS. Finally, we apply the conditions to explore the fully polynomial approximability of the constrained spanning problem whose fully polynomial approximability is still open.

Performance Analysis of Future Video Coding (FVC) Standard Technology

  • Choi, Young-Ju;Kim, Ji-Hae;Lee, Jong-Hyeok;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.73-78
    • /
    • 2017
  • The Future Video Coding (FVC) is a new state of the art video compression standard that is going to standardize, as the next generation of High Efficiency Video Coding (HEVC) standard. The FVC standard applies newly designed block structure, which is called quadtree plus binary tree (QTBT) to improve the coding efficiency. Also, intra and inter prediction parts were changed to improve the coding performance when comparing to the previous coding standard such as HEVC and H.264/AVC. Experimental results shows that we are able to achieve the average BD-rate reduction of 25.46%, 38.00% and 35.78% for Y, U and V, respectively. In terms of complexity, the FVC takes about 14 times longer than the consumed time of HEVC encoder.

A determination of linear decision function using GA and its application to the construction of binary decision tree (유전 알고리즘을 이용한 선형 결정 함수의 결정 및 이진 결정 트리 구성에의 적용)

  • 정순원;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.271-274
    • /
    • 1996
  • In this paper a new determination scheme of linear decision function is proposed. In this scheme, the weights in linear decision function is obtained by genetic algorithm. The result considering balance between clusters as well as classification error can be obtained by properly selecting the fitness function of genetic algorithm in determination of linear decision function and this has the merit in applying this scheme to the construction of binary decision tree. The proposed scheme is applied to the artificial two dimensional data and real multi dimensional data. Experimental results show the usefulness of the proposed scheme.

  • PDF

Compacted Codeword based Huffman Decoding for MPEG-2 AAC Audio (MPEG-2 AAC 오디오 코더를 위한 컴팩트화 코드워드 기반 허프만 디코딩 기법)

  • Lee, Jae-Sik;Lee, Eun-Seo;Chang, Tae-Gyu
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.369-370
    • /
    • 2006
  • This paper presents a new method for Huffman decoding specially designed for the MPEG-2 AAC audio. The method significantly enhances the processing efficiency of the conventional Huffman decoding realized with the ordinary binary tree search method. A data structure is newly designed based on the numerical interpretation of the incoming bit stream and its utilization for the offset oriented nodes allocation. The experimental results show the average performance enhancement of 54% and 665%, compared to those of the conventional binary tree search method and the sequential search method, respectively.

  • PDF

Improvement of algorithm for calculating word count using character hash and binary search tree (문자 해시와 이원 탐색 트리를 이용한 어절 빈도 계산 알고리즘의 성능 개선)

  • Park, Il-Nam;Kang, Seung-Shik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.599-602
    • /
    • 2010
  • 인터넷 검색 사이트는 사용자들이 검색한 단어들의 순위를 매기는 실시간 검색 순위 서비스를 제공하는데 검색되는 단어들의 순위를 매기기 위해서는 각 단어들의 분포도를 알 수 있는 어절 빈도 계산을 수행해야 한다. 어절 빈도는 BST(Binary Search Tree)를 수행하여 계산할 수 있는데, 사용자에 의하여 검색되는 단어들은 길이와 그 형태가 다양하여 빈도 계산시에 BST 의 깊이가 깊어져서 계산 시간이 오래 걸리게 된다. 본 논문에서는 문자 해시를 이용하여 깊이가 깊은 BST 의 탐색 속도를 개선하는 알고리즘을 제안하였다. 이 방법으로 빈도 계산 속도를 비교하였을 때 문자 해시의 범위에 의해 1KB 의 추가적인 기억공간의 사용하여 9.3%의 성능 개선 효과가 있었고, 해시 공간을 10KB 추가로 사용할 때는 24.3%, 236KB 일 때는 40.6%로의 효율로 BST 의 빈도 계산 속도를 향상 시킬 수 있었다.

Block partitioning in EVC (EVC 의 블록 분할 방식)

  • Park, Minsoo;Park, Min Woo;Choi, Kiho;Piao, Yinji;Choi, Kwang Pyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.162-165
    • /
    • 2020
  • 본 논문에서는 차세대 비디오 압축 표준인 MPEG-5 Essential Video Coding (EVC) 에서 사용된 블록 분할 방식에 대해서 소개한다. EVC 에서 사용된 블록 분할 방식은 기존 비디오 압축 표준인 HEVC/H.265 에서 사용된 쿼드 트리(Quad-tree)가 아닌 이진 분할(Binary split)과 삼진 분할(Ternary split)을 사용한 Binary ternary tree(BTT) 기술을 사용하고 있다. 또한 기존 비디오 압축 기술과 달리 분할된 블록의 코딩 순서를 정해서 사용 할 수 있는 Split unit coding order (SUCO) 기술이 사용되고 있다.

  • PDF

A GA-based Binary Classification Method for Bankruptcy Prediction (도산예측을 위한 유전 알고리듬 기반 이진분류기법의 개발)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.1-16
    • /
    • 2008
  • The purpose of this paper is to propose a new binary classification method for predicting corporate failure based on genetic algorithm, and to validate its prediction power through empirical analysis. Establishing virtual companies representing bankrupt companies and non-bankrupt ones respectively, the proposed method measures the similarity between the virtual companies and the subject for prediction, and classifies the subject into either bankrupt or non-bankrupt one. The values of the classification variables of the virtual companies and the weights of the variables are determined by the proper model to maximize the hit ratio of training data set using genetic algorithm. In order to test the validity of the proposed method, we compare its prediction accuracy with ones of other existing methods such as multi-discriminant analysis, logistic regression, decision tree, and artificial neural network, and it is shown that the binary classification method we propose in this paper can serve as a premising alternative to the existing methods for bankruptcy prediction.

Methods to Recognize and Manage Spatial Shapes for Space Syntax Analysis (공간구문분석을 위한 공간형상 인식 및 관리 방법)

  • Jeong, Sang-Kyu;Ban, Yong-Un
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.95-100
    • /
    • 2011
  • Although Space Syntax is a well-known technique for spatial analysis, debates have taken place among some researchers because the Space Syntax discards geometric information as both shapes and sizes of spaces, and hence may cause some inconsistencies. Therefore, this study aims at developing methods to recognize and manage spatial shapes for more precise space syntax analysis. To reach this goal, this study employed both a graph theory and binary spatial partitioning (BSP) tree to recognize and manage spatial information. As a result, spatial shapes and sizes could be recognized by checking loops in graph converted from spatial shapes of built environment. Each spatial shape could be managed sequentially by BSP tree with hierarchical structure. Through such recognition and management processes, convex maps composed of the fattest and fewest convex spaces could be drawn. In conclusion, we hope that the methods developed here will be useful for urban planning to find appropriate purposes of spaces to satisfy the sustainability of built environment on the basis of the spatial and social relationships in urban spaces.

A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM (차세대 비디오 코덱(JEM)의 고속 QTBT 분할 깊이 결정 기법)

  • Yoon, Yong-Uk;Park, Do-Hyun;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.5
    • /
    • pp.541-547
    • /
    • 2017
  • The Joint Exploration Model (JEM), which is a reference SW codec of the Joint Video Exploration Team (JVET) exploring the future video standard technology, provides a recursive Quadtree plus Binary Tree (QTBT) block structure. QTBT can achieve enhanced coding efficiency by adding new block structures at the expense of largely increased computational complexity. In this paper, we propose a fast decision algorithm of QTBT block partitioning depth that uses the rate-distortion (RD) cost of the upper and current depth to reduce the complexity of the JEM encoder. Experimental results showed that the computational complexity of JEM 5.0 can be reduced up to 21.6% and 11.0% with BD-rate increase of 0.7% and 1.2% in AI (All Intra) and RA (Random Access), respectively.