• 제목/요약/키워드: binary robot manipulator

검색결과 9건 처리시간 0.066초

인공신경망을 이용한 2진 로봇 매니퓰레이터의 역기구학적 해석 (Inverse Kinematic Analysis of a Binary Robot Manipulator using Neural Network)

  • 류길하;정종대
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.211-218
    • /
    • 1999
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot’s trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. In this paper, we solve the inverse kinematic problem of a binary parallel robot manipulator using neural network and test the validity of this structure using some arbitrary points m the workspace of the robot manipulator. As a result, we can show that the neural network can find the nearest feasible points and corresponding binary states of the joints of the robot manipulator

  • PDF

2진 로봇 매니퓰레이터의 기구학적 해석 (Kinematic Analysis of a Binary Robot Manipulator)

  • 류길하
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.162-168
    • /
    • 1998
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot's trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. This paper develops algorithms for kinematics and workspace analysis of a binary manipulator.

  • PDF

3차원 2진 로봇 머니퓰레이터의 역기구학적 해석 (Inverse Kinematic Analysis of a Three Dimensional Binary Robot Manipulator)

  • 류길하;이인석
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.205-212
    • /
    • 1999
  • A three dimensional binary parallel robot manipulator uses actuators which have only two stable states and its structure is variable geometry truss. As a result, it has a finite number of states and fault tolerant mechanism because of kinematic redundancy. This kind of robot manipulator has some advantages compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. Because the number of states of a binary robot manipulator grows exponentially with the number of actuators it is very difficult to solve and inverse kinematic problem. The goal of this paper is to develop an efficient algorithm to solve an inverse kinematic problem of three dimensional binary parallel robot manipulator using a backbone curve when the number of actuators are too much. We first derive the coordinate transformations associated with a three degree of freedom in-parallel actuated robot manipulator. The backbone curve is generated optimally by considering the maximum roll and pitch angles of the robot manipulator configuration and length of link. Then, the robot manipulator is fitted along the backbone curve with some criterion.

  • PDF

등뼈 곡선을 이용한 2진 로봇 머니퓰레이터의 역기구학적 해석 (A Study on the Inverse kinematic Analysis of a Binary Robot Manipulator using Backbone Curve)

  • 류길하;이인석
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.174-179
    • /
    • 1999
  • A binary parallel robot manipulator uses actuators which have only two stable states and is structure is variable geometry truss. As a result, it has a finite number of states and fault tolerant mechanism because of kinematic redundancy. This kind of robot manipulator has the following advantages compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. Because the number of states of a binary robot manipulator grows exponentially with the number of actuators, it is very difficult to solve an inverse kinematic problem. The goal of this paper is to develop an efficient algorithm to solve an inverse kinematic problem when the number of actuators are too much or the target position is located outside of workspace. The backbone curve is generated optimally by considering the curvature of the robot manipulator configuration and length of link. Then, the robot manipulator is fitted along the backbone curve with some criteria.

  • PDF

A kinematic Analysis of Binary Robot Manipulator using Genetic Algorithms

  • Gilha Ryu;Ihnseok Rhee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권1호
    • /
    • pp.76-80
    • /
    • 2001
  • A binary parallel robot manipulator uses actuators that have only two stable states being built by stacking variable geometry trusses on top of each other in a long serial chain. Discrete characteristics of the binary manipulator make it impossible to analyze an inverse kinematic problem in conventional ways. We therefore introduce new definitions of workspace and inverse kinematic solution, and the apply a genetic algorithm to the newly defied inverse kinematic problem. Numerical examples show that our genetic algorithm is very efficient to solve the inverse kinematic problem of binary robot manipulators.

  • PDF

유전 알고리즘을 이용한 2진 로봇 머니퓰레이터의 역기구학적 해석 (An Inverse Kinematic Analysis of a Binary Robot Manipulator using Genetic Algorithms)

  • 이인석;류길하
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.203-208
    • /
    • 2000
  • 2진 로봇 머니퓰레이터는 기하학적 형상이 가변트러스 구조로 되어 있으며 조인트의 구동원으로 사용되는 엑츄에이터는 2가지의 변위, 즉 최대 및 최소 변위만으로 동작한다. 따라서 작업영역은 연속적으로 주어지는 일반 로봇 머니퓰레이터와는 달리 유한 개의 위치 벡터의 집합 형태로 나타난다. 기존의 역기구학적 해석방법을 적용하기 어려운 2진 로봇 머니퓰레이터의 불연속적인 특성에 대해 새로운 작업영역과 역기구학 문제를 정의하였다. 유전 알고리즘을 사용하여 새로이 정의된 문제의 역기구학적 해석을 수행하였으며 유전 알고리즘이 2진 로봇 머니퓰레이터의 역기구학적 해석에 있어서 효과적이고 강건한 방법임을 보여주었다.

  • PDF

수많은 모듈로 구성된 이진 매니플레이터 역기구 설계를 위한 연속변수공간 최적화 신기법 연구 (New Continuous Variable Space Optimization Methodology for the Inverse Kinematics of Binary Manipulators Consisting of Numerous Modules)

  • 장강원;남상준;김윤영
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1574-1582
    • /
    • 2004
  • Binary manipulators have recently received much attention due to hyper-redundancy, light weight, good controllability and high reliability. The precise positioning of the manipulator end-effecter requires the use of many modules, which results in a high-dimensional workspace. When the workspace dimension is large, existing inverse kinematics methods such as the Ebert-Uphoff algorithm may require impractically large memory size in determining the binary positions of all actuators. To overcome this limitation, we propose a new inverse kinematics algorithm: the inverse kinematics problem is formulated as an optimization problem using real-valued design variables, The key procedure in this approach is to transform the integer-variable optimization problem to a real-variable optimization problem and to push the real-valued design variables as closely as possible to the permissible binary values. Since the actual optimization is performed in real-valued design variables, the design sensitivity becomes readily available, and the optimization method becomes extremely efficient. Because the proposed formulation is quite general, other design considerations such as operation power minimization can be easily considered.

로봇 시각 장치를 이용한 압연코일의 라벨링 자동화 구현 (An implementation of the automatic labeling rolling-coil using robot vision system)

  • 이용중;이양범
    • 제어로봇시스템학회논문지
    • /
    • 제3권5호
    • /
    • pp.497-502
    • /
    • 1997
  • In this study an automatic rolling-coil labeling system using robot vision system and peripheral mechanism is proposed and implemented, which instead of the manual labor to attach labels Rolling-coils in a steel mill. The binary image process for the image processing is performed with the threshold, and the contour line is converted to the binary gradient which detects the discontinuous variation of brightness of rolling-coils. The moments invariant algorithm proposed by Hu is used to make it easy to recognize even when the position of the center are different from the trained data. The position error compensation algorithm of six degrees of freedom industrial robot manipulator is also developed and the data of the position of the center rolling-coils, which is obtained by floor mount camera, are transferred by asynchronous communication method. Therefore, even if the position of center is changed, robot moves to the position of center and performs the labeling work successfully. Therefore, this system can be improved the safety and efficiency.

  • PDF

로봇비젼 시스템을 이용한 핫코일의 자동라벨링 시스템 구현 (An Implementation of the Labeling Auto.ation system for Hot-coils using a Robot Vision System)

  • 이용중;김학범;이양범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1266-1268
    • /
    • 1996
  • In this study an automatic roiling-coli labeling system using robot vision system and peripheral mechanism is proposed and implemented, which instead of the manual labor to attach labels Rolling-coils in a steel miil. The binary image process for the image processing is performed with the threshold, and the contour line is converted to the binary gradient which detects the discontinuous variation of brightness of rolling-coils. The moment invariants algorithm proposed by Hu is used to make it easy to recognize even when the position of the center are different from the trained data. The position error compensation algorithm of six degrees of freedom industrial robot manipulator is also developed and the data of the position of the center rolling-coils, which is obtained by floor mount camera, are transfered by asynchronous communication method. Therefore even if the position of center is changed, robot moves to the position of center and performs the labeling work successfully. Therefore, this system can be improved the safety and efficiency.

  • PDF