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An Inverse Kinematic Analysis of a Binary Robot Manipulator using
Genetic Algorithms

Ihnseok Rhee* and Gilha Ryu*

ABSTRACT
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1. Introduction additional degrees of freedom facilitate obstacle
avoidance and allow tasks to be performed even if
Traditional robot manipulators are consisted of the some of the actuators fail. Hyper redundant robots
continuous-range-of-motion actuators such as DC with very large degree of kinematic redundancy are
motors or hydraulic actuators. In contrast to the analogous, in morphology and operation, to snakes,
traditional robot manipulators, the actuators of the elephant trunks, and tentacles. Because the number
binary parallel robot manipulators have two stable of possible configurations of a binary robot
st:tes only. The structure of the manipulators consists manipulator grows exponentially with the number of
of variable geometry truss, stacking on top of each actuators it is very difficult to solve an inverse
other, to form a long serial chain. The binary kinematic problem. The kinematics and control of
manipulators  have  several  advantages  over hyper redundant manipulators with continuous
coaventional six DOF manipulators because the actuators have been studied by some researchers'”
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Fig. 1 Planar binary robot manipulator

An inverse kinematics of the binary manipulator was

indirectly solved by using backbone curve®®.  The
describing the shape of binary

It can be generated by

backbone curve,
manipulator, is continuous.
optimization scheme considering the curvature limit of
the binary manipulator’. The workspace of the binary
manipulator could not be described by conventional
To describe the
workspace of a binary manipulator, the point density

way because of its discrete nature.
was introduced’. Also an effective algorithm using
the density map has been studied to compute the
inverse kinematic solutions of the binary robot
manipu]ators6'7,

An inverse kinematic problem was solved by
minimizing the error of the end effector position. A
a minimization

genetic  algorithm was used as

procedure. This algorithm was applied to obtain the
inverse kinematic solutions with small error bound as

well as the density map of the workspace.
2. Kinematic Modeling

Schematic drawing of a binary robot manipulator

with 2 modules is shown in fig. 1. The binary

robot manipulator can reach 25" finite positions
because the actuator

q; has two states, /., and

The

three linear binary actuators and two plates (upper

Loy » 0Ny, i-th truss module, composed of
and lower plate), is shown in fig 2. The coordinate
systems are assigned to each basic module for the
kinematic analysis. The {(} coordinate system is

located on the base plate with its origin at (O, in fig.

I and x- and y-axes are tangential and normal to
the upper plate respectively. The origin of a moving
coordinate system {7} is located at the point D on
the upper plate of the 7-th module. The reference
coordinate system { #} is attached on the base plate
with its origin at the center of base plate as shown in

fig. 1.

3. Kinematic Analysis

3.1 Forward Kinematics
The relationship between these two coordinate
systems can be described by the transformation matrix

as follow,
. cos(@) —sin(e) x
T = | sin(g) cos(¢) v,
0 0 1

Xr—l

B(b,0)

A(0,0)

Fig. 2 Kinematic modeling of binary robot

manipulator for the 7-th module
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where is the rotation angle between two

¢

coordinate systems and (x;, ¥p) is the position
vector of origin of the coordinate system { 7} with
respect to { i—1}. And (xg, yy) and ¢ are given

4
as

., C,— D,
xy= Dy, vy = Dy, ¢= tan l(_C‘;(_—Df)

where
: b — ahi+ dbima [ 2 3
Cx: —_é—b—’ Cy: q3i*l-cx
p oo Doimhk L bENB— 4k
x ’ y =
ks 24
2 2 2
Qi1+t g5, — b C.
k) = , By = —
! ch 2 Cy
1 . 2 By _ B
[] = _—k% -+ 1, ZZ - kg ’ 13 == k‘;_ q%,‘_z

D.. should be chosen to satisfy ACx AD> 0.

The coordinate of the end effector can be

Jescribed using the following equation:

=TTy 1. 757 Y,

2.2 Inverse Kinematics

The workspace in terms of conventional way is an
The
viorkspace of a binary manipulator is not given as a
This
d screte characteristic makes it impossible to find an
terms of
conventional way for almost all target positions in

area where robot manipulator can reach.

continuous area but a set of 2% points.

2:act  inverse kinematic solution in

pane. Therefore, new definitions of workspace and
irverse kinematic solution need to be introduced for
ke hinary manipulator.

We define the of the

workspace binary

r1wipulator, W(§) C RQ, as a set of points where
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end effector can reach within certain bound §, that

is,

M ={xlllx— x. (Il <8 for some gs}

-, x.. and g={qy,qz, ", q3,)} are

Euclidian norm, end effector position

where

and a joint

variable vector respectively.  For a target point

xe W(48), we can find a g such that

Iz~ x(@)ll<o 0

It is clear that g satisfying equation (1) is not
unique for a given target point. Therefore, an inverse

kinematic solution for a binary manipulator should be

described by a set of gs satisfying equation (1)

The inverse kinematic solution for a target point x

is characterized by triplet { g, o, 8} where g is
a joint vector such that

lx— x. (Dl <llz— z(a)ll @

for all g satisfying equation (1) and p denotes

density defined as
o= 7’l/ 23m

where # is the number of joint vector satisfying

equation (1). Obviously, _g is the joint vector

producing minimum error and o represents the
degree of smoothness, the ability of the manipulator
to move smoothly in the neighborhood of a target
point, as well as the probability that an arbitrary joint
vector drives the end effector within a ball given by
equation (1).

To obtain an inverse kinematic solution triplet for

a target point x, we first find a joint vector q°

minimizing cost function J given as
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Ja=lz— x.(q))* ®)

Then x e W(8) and g= q* if and only if g¢°
satisfies equation (1). However, it is difficult to
apply optimization schemes such as the nonlinear
programming or the gradient method to minimization

of equation (3) since ¢; has two states, /., and

L max » only.

4. Genetic Algorithm

Genetic algorithm is an optimization technique
based on the mechanics of natural genetics. In
algorithm, the
optimization problem is usually coded as a finite

genetic parameter set of the

length binary string. Genetic algorithm, due to its
binary nature, can be easily applied to the inverse
kinematic problem of a binary manipulator,

Let v be a binary string representation of joint
variables of a binary manipulator, that is,
v= b3y bypu—y * by b 4)

where

b-4= 0 fOI' 4; = lmin
! 1 for g;= lpax

At each iteration { of a genetic algorithm, the

population P(f) is composed of potential solutions
P(H) = {o],v3,..., 0"} (5)

where #, is the population size which remains

constant over entire iteration and individual v, is

coded as equation (4). We adopt simple genetic
algorithm described in ref. [8] as a basic algorithm.
In simple genetic algorithm, a population of binary
coded potential solutions is constructed and undergoes
three genetic operators, selection, crossover and

mutation at each iteration, so called generation. Fig.

procedure genetic algorithm begin t= ()
initialize P({)
evaluate P(1)
while (not termination~condition) do
begin
t—t+1
select P(#) from P(t—1)
recombine F{)
evaluate P({)
end

end

Fig. 3 A simple genetic algorithm

3 shows the procedures. Selection is a reproduction
process of population based on the fitness of
individual. We use the following formula to calculate
individual v, the

the fitness of an binary

representation of joint variable vector g.

W) = Juwax —JC @)

where f denotes fitness and [, the maximum

cost in the last w generations which is called the
scaling window. Individuals of new population are
selected by spinning a roulette wheel with slots sized
according to fitness of current population.

The selected population is recombined with two
genetic operators, crossover and mutation. We mate
selected individuals randomly. For each pair,
crossover takes place with crossover probability p..
Crossover operation replaces a pair
by besy ber by < bawes eyt ber byd
with a pair of offspring —53,,,--~—bc+1 b by

< _b3m 7%+1 b by> where ¢ is the crossover

point which is also chosen randomly. Mutation is

random alternation of a string position. In binary
code, it means that the mutated bit is interchanged
between 1 and 0. Every bit of individual has a

chance to be mutated with probability p,,.
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In addition to basic three operators, we use the
elitist strategy in which the current best individual
survives intact to next generation.

As generation elapses, the best individual of each
generation converges to the binary representation of

*

q . We
individuals satisfying equation (1) at each generation.

accumulate the number of distinct
If n is
w(s) .

P-actically, it is almost impossible to obtain #n

The accumulated number converges to 7.

not zero, the given target point is in
exactly since too many generations are required.
However the ns for several target positions give us a

knowledge about relative density.

5. Numerical Examples

this
demonstrate

In section, are to
the of

algorithms to obtain inverse kinematic solutions for

examples presented

effectiveness the genetic

the binary robot manipulator. As an example, we

=17,

For the genetic algorithm,

consider a binary robot with m = 10,
lon =25 and b=05.

w, p.. and p, are chosen as 30, 5, 0.6, and

L max

Wy,
0.0333  respectively.
§=2.5 is shown in fig. 4.
located at the center of the squares and equally
5000
generations are evolved for each target position to

Relative density map for

Target positions are

spaced by 5 horizontally and vertically.

ob-ain the minimum error solution ¢°*. In fig. 4,
dark zone represents high density area and thin zone
The higher density a target point has

the more accurate minimum error solution in terms of

for low value.

prcbability one can get.

The minimum error solutions for some target
points are shown in table 1. The count # at the
third the total of distinct
individuals satisfying equation (1) for whole 5000

gererations. Octal number format is used to describe

column is number

‘he binary string representation of ¢*. Fig. 5 shows
he configurations of binary manipulator for each

:ase.  The mark 'A' and '0' represent the target
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point and the end effector position respectively. In

case (a), is out of the
workspace, minimum error solution results in large
For the target points of case (¢) and (d) with

higher density, minimum error solutions derive the

when the target point
error.

end effector to the target points more accurately. The
density for the case (c) is higher than (d), but the
error is larger. Higher density implies that more
accurate minimum error solution could be obtained

statistically not deterministically.

6. Conclusions

New definitions of the workspace and the point
density for the
introduced. The point density represents the ability of
the the
neighborhood of a target point, as well as the

inverse kinematic problem were

manipulator to move smoothly in

probability that an arbitrary joint vector drives the end
effector within a ball. A genetic algorithm was
proposed as a method to solve an inverse kinematic

The adopted
minimum

problem of a binary manipulator.
the
solution as well as relative density of the workspace

genetic  algorithm produces error

for a given target point. Efficiency of the genetic

algorithm was demonstrated by numerical examples.
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Fig. 4 Density map of the workspace ( § = 2.5)
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Table 1 Results of the inverse kinematic analysis

joint state
case target count| o ror ! .
point n (q)
a (2.5,7.5) 0 5.339 1 33311111144
b (-7.5,-7.5) 76 | 0.347 | 44444446673
c (22.5,42.5) | 2293 | 0.078 | 14022323353
d (-7.5, 37.5) | 748 } 0.036 | 42301131445
50
40 40
30 30
20 20
10 a 10
0 T 0 ESE
R R MR N e ® owm v w ® @
case (a) case(b)
L R 50
40l 40
30 30
20 20
10 10
0 base ¢ ase
30 <20 10 0 W0 20 ki 30 20 10 1] 10 20 30
case(c) case(d)

Fig. 5 Configurations of the binary manipulator
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