• Title/Summary/Keyword: binary phase shift keying

Search Result 77, Processing Time 0.02 seconds

Optimum Convolutional Error Correction Codes for FQPSK-B Signals

  • Park, Hyung-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.611-617
    • /
    • 2004
  • The optimum convolutional error correction codes for recently standardized Feher-patented quadrature phase-shift keying (FQPSK-B) modulation are proposed. We utilize the continuous phase modulation characteristics of FQPSK-B signals for calculating the minimum Euclidean distance of convolutional coded FQPSK-B signal. It is shown that the Euclidean distance between two FQPSK-B signals is proportional to the Hamming distance between two binary data sequence. Utilizing this characteristic, we show that the convolutional codes with optimum free Hamming distance is the optimum convolutional codes for FQPSK-B signals.

Design and Implementation of Multi-Gigabit Packet Receiver Algorithms based on ECMA Standard (ECMA 표준에 기반한 Multi-Gigabit Packet 수신기 알고리듬 설계 및 구현)

  • Lee, Yong-Wook;Oh, Wang-Rok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.26-31
    • /
    • 2009
  • In this paper, we propose the receiver algorithms suitable for the ECMA standard proposed for multi-gigabit packet transmission in 60 GHz band. In the ECMA standard, various modulation schemes are used for system flexibility. Hence, it is crucial to develop receiver algorithms supporting various modulation schemes with an uniform hardware structure. In this paper, we propose the receiver algorithms supporting DBPSK, DQPSK and OOK modulation schemes simultaneously. The proposed algorithms are not only hardware efficient but also support various modulation schemes with an uniform hardware structure.

Long-range multiple-input-multiple-output underwater communication in deep water (심해에서의 장거리 다중입출력 수중통신)

  • Kim, Donghyeon;Kim, Daehwan;Kim, J.S.;Hahn, Joo Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.417-427
    • /
    • 2021
  • Long-range communication in deep waters must overcome the low data rate due to limited bandwidth. This paper presents the performance of Multiple-Input-Multiple-Output (MIMO) system to increase the data rate. In MIMO system, communication performance is degraded by crosstalk between users and an adaptive passive Time Reversal Processing (TRP) is widely used to eliminate this. In October 2018, long-range underwater acoustic communication experiment was conducted in deep water (1,000 m ~) off the east of Pohang, South Korea. During the experiment, a vertical line array was utilized and communication signals modulated by binary phase shift keying and quadrature phase shift keying with a symbol rate of 512 sps were transmitted. To generate MIMO communication signals, received signals from ranges of 26 km and 30 km is synthesized. Compared to the conventional passive TRP, the adaptive passive TRP eliminates the crosstalk between users and achieves error-free performance with an increase of output signal-to-noise ratio. Therefore, two users separated by 4 km in range achieves an aggregate data rate of 1,024 symbols/s.

Blind symbol timing offset estimation for offset-QPSK modulated signals

  • Kumar, Sushant;Majhi, Sudhan
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.324-332
    • /
    • 2020
  • In this paper, a blind symbol timing offset (STO) estimation method is proposed for offset quadrature phase-shift keying (OQPSK) modulated signals, which also works for other linearly modulated signals (LMS) such as binary-PSK, QPSK, 𝜋/4-QPSK, and minimum-shift keying. There are various methods available for blind STO estimation of LMS; however, none work in the case of OQPSK modulated signals. The popular cyclic correlation method fails to estimate STO for OQPSK signals, as the offset present between the in-phase (I) and quadrature (Q) components causes the cyclic peak to disappear at the symbol rate frequency. In the proposed method, a set of close and approximate offsets is used to compensate the offset between the I and Q components of the received OQPSK signal. The STO in the time domain is represented as a phase in the cyclic frequency domain. The STO is therefore calculated by obtaining the phase of the cyclic peak at the symbol rate frequency. The method is validated through extensive theoretical study, simulation, and testbed implementation. The proposed estimation method exhibits robust performance in the presence of unknown carrier phase offset and frequency offset.

Performance Improvement on the Combined Convolutional Coding and Binary CPFSK Modulation (Convolutional Code/Binary CPFSK 복합 전송시스템의 성능개선에 관한 연구)

  • Choi, Yang Ho;Baek, Je In;Kim, Jae Kyoon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.591-596
    • /
    • 1986
  • A binary continuous phase frequency shift keying (CPFSK), whose phase is a continuous function of time and instantaneous frequency is constant, is a bandwidth efficient constant envelope signalling scheme. A transmitting signal is formed by combined coding of a convolutional encoder and a binary CPFSK modulator. The signal is transmitted throuth additive white Gaussian noise(AWGN) channel. If the received signal is detected by a coherent maximum likelihood(ML) receiver, error probability can be expressed approximately in terms of minimum Euclidean distance. We propose rate 2/4 codes for the improvement of error performance without increating the data rate per bandwidth and the receiver complexity. Its minimum Euclidean distances are compared with those of rate \ulcornercodes as a function of modulation index and observation interval.

  • PDF

An Improvement on FFT-Based Digital Implementation Algorithm for MC-CDMA Systems (MC-CDMA 시스템을 위한 FFT 기반의 디지털 구현 알고리즘 개선)

  • 김만제;나성주;신요안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7A
    • /
    • pp.1005-1015
    • /
    • 1999
  • This paper is concerned with an improvement on IFFT (inverse fast Fourier transform) and FFT based baseband digital implementation algorithm for BPSK (binary phase shift keying)-modulated MC-CDMA (multicarrier-code division multiple access) systems, that is functionally equivalent to the conventional implementation algorithm, while reducing computational complexity and bandwidth requirement. We also derive an equalizer structure for the proposed implementation algorithm. The proposed algorithm is based on a variant of FFT algorithm that utilizes a N/2-point FFT/IFFT for simultaneous transformation and reconstruction of two N/2-point real signals. The computer simulations under additive white Gaussian noise channels and frequency selective fading channels using equal gain combiner and maximal ratio combiner diversities, demonstrate the performance of the proposed algorithm.

  • PDF

Underwater Acoustic Channel Bandwidth and its Effects on BFSK/BPSK Performance (수중음향채널의 대역에 따른 BFSK/BPSK 전송 성능)

  • 박지현;윤종락;박규칠
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1243-1249
    • /
    • 2004
  • In this paper, the multipath effect on underwater acoustic channel bandwidth and BFSK and BPSK bit error dependancy on channel bandwidth are analyzed. The multipath is modeled as a discrete multipath and a continuous multipath and the channel bandwidth is expressed as a function of multipath delay spread constant. Bit error characteristics on the channel bandwidth and the criteria of the multipath delay spread constant are found through the numerical simulation. The transmission bit rate of less than 100bps in the water tank which has a channel bandwidth of 100Hz, is a consistent result with the numerical simulation.

Modulation Recognition of BPSK/QPSK Signals based on Features in the Graph Domain

  • Yang, Li;Hu, Guobing;Xu, Xiaoyang;Zhao, Pinjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3761-3779
    • /
    • 2022
  • The performance of existing recognition algorithms for binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals degrade under conditions of low signal-to-noise ratios (SNR). Hence, a novel recognition algorithm based on features in the graph domain is proposed in this study. First, the power spectrum of the squared candidate signal is truncated by a rectangular window. Thereafter, the graph representation of the truncated spectrum is obtained via normalization, quantization, and edge construction. Based on the analysis of the connectivity difference of the graphs under different hypotheses, the sum of degree (SD) of the graphs is utilized as a discriminate feature to classify BPSK and QPSK signals. Moreover, we prove that the SD is a Schur-concave function with respect to the probability vector of the vertices (PVV). Extensive simulations confirm the effectiveness of the proposed algorithm, and its superiority to the listed model-driven-based (MDB) algorithms in terms of recognition performance under low SNRs and computational complexity. As it is confirmed that the proposed method reduces the computational complexity of existing graph-based algorithms, it can be applied in modulation recognition of radar or communication signals in real-time processing, and does not require any prior knowledge about the training sets, channel coefficients, or noise power.

Tight Bounds and Invertible Average Error Probability Expressions over Composite Fading Channels

  • Wang, Qian;Lin, Hai;Kam, Pooi-Yuen
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.182-189
    • /
    • 2016
  • The focus in this paper is on obtaining tight, simple algebraic-form bounds and invertible expressions for the average symbol error probability (ASEP) of M-ary phase shift keying (MPSK) in a class of composite fading channels. We employ the mixture gamma (MG) distribution to approximate the signal-to-noise ratio (SNR) distributions of fading models, which include Nakagami-m, Generalized-K ($K_G$), and Nakagami-lognormal fading as specific examples. Our approach involves using the tight upper and lower bounds that we recently derived on the Gaussian Q-function, which can easily be averaged over the general MG distribution. First, algebraic-form upper bounds are derived on the ASEP of MPSK for M > 2, based on the union upper bound on the symbol error probability (SEP) of MPSK in additive white Gaussian noise (AWGN) given by a single Gaussian Q-function. By comparison with the exact ASEP results obtained by numerical integration, we show that these upper bounds are extremely tight for all SNR values of practical interest. These bounds can be employed as accurate approximations that are invertible for high SNR. For the special case of binary phase shift keying (BPSK) (M = 2), where the exact SEP in the AWGN channel is given as one Gaussian Q-function, upper and lower bounds on the exact ASEP are obtained. The bounds can be made arbitrarily tight by adjusting the parameters in our Gaussian bounds. The average of the upper and lower bounds gives a very accurate approximation of the exact ASEP. Moreover, the arbitrarily accurate approximations for all three of the fading models we consider become invertible for reasonably high SNR.

Cancellation of AltBOC Correlation Side-Peaks for Frequency Sharing in Satellite Communication Spectrum (위성통신대역 주파수 공유를 위한 AltBOC 상관 내 주변 첨두 제거 기법)

  • Chae, Keunhong;Yoon, Seokho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.810-816
    • /
    • 2014
  • The alternative binary offset carrier (AltBOC) signal shares frequency spectrum with the phase shift keying (PSK) signal, enabling us to manage the satellite communication spectrum more efficiently. However, the side-peaks in the AltBOC autocorrelation pose an ambiguity in the AltBOC signal tracking, and consequently, makes the frequency sharing via the AltBOC difficult. Therefore, in this paper, we propose a cancellation scheme of the AltBOC correlation side-peaks. From the numerical results, it is confirmed that the proposed scheme removes the ambiguity in signal tracking caused by the side-peaks completely, and thus, has a much lower tracking error standard deviation (TESD) (i.e., a much better tracking performance) than the conventional scheme.