• Title/Summary/Keyword: binary noise

Search Result 322, Processing Time 0.039 seconds

R Wave Detection Considering Complexity and Arrhythmia Classification based on Binary Coding in Healthcare Environments (헬스케어 환경에서 복잡도를 고려한 R파 검출과 이진 부호화 기반의 부정맥 분류방법)

  • Cho, Iksung;Yoon, Jungoh
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.33-40
    • /
    • 2016
  • Previous works for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods require accurate detection of ECG signal, higher computational cost and larger processing time. But it is difficult to analyze the ECG signal because of various noise types. Also in the healthcare system based IOT that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose R wave detection considering complexity and arrhythmia classification based on binary coding. For this purpose, we detected R wave through SOM and then RR interval from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. R wave detection and PVC, PAC, Normal classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.41%, 97.18%, 94.14%, 99.83% in R wave, PVC, PAC, Normal.

Error Performance of Binary FSK Fast Frequency Hopping(BFSK/FFH) Systems in the Presence of Partial-Band Noise Jamming (부분 대역 전파 방해하에서의 바이내리 FSK 주파수 급도약 통신 시스템의 오차 성능에 관하여)

  • 홍윤기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.3
    • /
    • pp.52-60
    • /
    • 1983
  • This paper presents a complete analysis for the derivation of the probability of error for a fast (or multiple-hops per bit) frequency hopping spread spectrum system employing binary FSK modulation and noncoherent reception in the presence of partial-band noise jamming and thermal noise. The worst-case error rate performances were obtained numerically and presented as a function of E /N with L as a parameter, where E /N and L are the signal bit energy-to-jamiming density ratio and the number of hops per bit, respectively.

  • PDF

Inverse halftoning Using Anisotropic diffusion and Edge map (비등방성 확산 필터와 에지맵을 이용한 역하프토닝)

  • 고기영;주동현;염동훈;김두영
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.81-84
    • /
    • 2000
  • Digital Halftoning convert a continuous-tone images to a binary images. Inverse halftoning addresses the problem of recovering a continuous image from a halftoned binary image. Simple low pass filtering can remove the high frequency noise but it also removes the edge information. Thus the edge information should be separated from the halftoning noise. As a result, the edge of result image is blurring. This paper present that we obtain continuous-tone-image which using Anisotropic diffusion filter. To reduce noise without blurring the edges of reconstructed image use edge map. The experimental results show that proposed method gives a higher PSNR and better subjective quality than conventional methods. As a result, the edge information of reconstructed image reduce blurring.

  • PDF

A Joint Transform Correlator Encryption System Based on Binary Encoding for Grayscale Images

  • Peng, Kaifei;Shen, Xueju;Huang, Fuyu;He, Xuan
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.548-554
    • /
    • 2019
  • A binary encoding method for grayscale images is proposed to address their unsatisfactory decryption results from joint transform correlator (JTC) encryption systems. The method converts the encryption and decryption of grayscale images into that of binary images, and effectively improves decrypted-image quality. In the simulation, we replaced unencoded grayscale images with their binary encoded counterparts in the JTC encryption and decryption processes, then adopted a median filter to suppress saturation noise while keeping other settings unchanged. Accordingly, decrypted-image quality was clearly enhanced as the correlation coefficient (CC) between a decrypted image and its original rose from 0.8237 to 0.9473 initially, and then further to 0.9937, following the above two steps respectively. Finally, optical experimental results confirmed that the proposed encryption system works correctly.

Real-Time Non-Local Means Image Denoising Algorithm Based on Local Binary Descriptor

  • Yu, Hancheng;Li, Aiting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.825-836
    • /
    • 2016
  • In this paper, a speed-up technique for the non-local means (NLM) image denoising method based on local binary descriptor (LBD) is proposed. In the NLM, most of the computation time is spent on searching for non-local similar patches in the search window. The local binary descriptor which represents the structure of patch as binary strings is employed to speed up the search process in the NLM. The descriptor allows for a fast and accurate preselection of non-local similar patches by bitwise operations. Using this approach, a tradeoff between time-saving and noise removal can be obtained. Simulations exhibit that despite being principally constructed for speed, the proposed algorithm outperforms in terms of denoising quality as well. Furthermore, a parallel implementation on GPU brings NLM-LBD to real-time image denoising.

A Study on the Noise Improvement of All Digital Phase-Locked Loop Using Time-to-Digital Converter (시간-디지털 변환기를 이용한 ADPLL의 잡음 개선에 대한 연구)

  • Ahn, Tae-Won;Lee, Jongsuk;Lee, Won-Seok;Moon, Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.195-200
    • /
    • 2015
  • This paper presents SVBS-TDC (Semi-Vernier Binary-Search Time-to-Digital Converter) for the noise improvement of ADPLL (All-Digital Phase Locked Loop. We used a Semi-Vernier BS-TDC (Binary-Search TDC) architecture to improve the operation speed more then 10 times compared with the previous conventional BS-TDC and ensured a 510ps wide input range. The proposed Semi-Vernier BS-TDC was designed in a 65ns CMOS process and the simulation results showed 200MHz speed and 4ps resolution with a 1.2V supply voltage, and considerable noise improvement of ADPLL.

Multiple Decision Model for Image Denoising in Wavelet Transform Domain (웨이블릿 변환 영역에서 영상 잡음 제거를 위한 다중 결정 모델)

  • 엄일규;김유신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.937-945
    • /
    • 2004
  • A binary decision model which is used to denoising has demerits to measure the precise ratio of signal to noise because of only a binary classification. To supplement these demerits, complex statistical model and undecimated wavelet transform are generally exploited. In this paper, we propose a noise reduction method using a multi-level decision model for measuring the ratio of noise in noisy image. The propose method achieves good denoising performance with orthogonal wavelet transform because the ratio of signal to noise can be calculated to multi-valued form. In simulation results, the proposed denoising method outperforms 0.1dB in the PSNR sense than the state of art denoising algorithms using orthogonal wavelet transform.

Enhanced Detection of Glycans by MALDI-TOF Mass Spectrometry Using a Binary Matrix of 2,5-Dihydroxybenzoic Acid and 2,6-Dihydroxybenzoic Acid

  • Kim, Yunjin;Kim, Taehee;Lee, Jihyeon;Im, Haeju;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • v.4 no.2
    • /
    • pp.38-40
    • /
    • 2013
  • Glycans released from ovalbumin by PNGase F were analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry using three different dihydroxybenzoic acid (DHB) matrix systems: 2,5-DHB, 2,6-DHB, and a 2,5-DHB/2,6-DHB binary matrix. Relative to the results obtained with the single-component matrices (2,5-DHB or 2,6-DHB), the 2,5-DHB/2,6-DHB binary matrix boasted lower background noise and higher sensitivity. A total of 16 glycan peaks were observed using the 2,5-DHB/2,6-DHB binary matrix, while only 10 and 9 glycan peaks were observed using the 2,5-DHB and 2,6-DHB matrices, respectively.

Performance Improvement on the Combined Convolutional Coding and Binary CPFSK Modulation (Convolutional Code/Binary CPFSK 복합 전송시스템의 성능개선에 관한 연구)

  • Choi, Yang Ho;Baek, Je In;Kim, Jae Kyoon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.591-596
    • /
    • 1986
  • A binary continuous phase frequency shift keying (CPFSK), whose phase is a continuous function of time and instantaneous frequency is constant, is a bandwidth efficient constant envelope signalling scheme. A transmitting signal is formed by combined coding of a convolutional encoder and a binary CPFSK modulator. The signal is transmitted throuth additive white Gaussian noise(AWGN) channel. If the received signal is detected by a coherent maximum likelihood(ML) receiver, error probability can be expressed approximately in terms of minimum Euclidean distance. We propose rate 2/4 codes for the improvement of error performance without increating the data rate per bandwidth and the receiver complexity. Its minimum Euclidean distances are compared with those of rate \ulcornercodes as a function of modulation index and observation interval.

  • PDF