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Error Performance of Binary FSK Fast
Frequency Hopping(BFSK/FFH) Systems in the Presence
of Partial-Band Noise Jamming
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Abstract

This paper presents a complete analysis for the derivation of the probability of error for
a fast (or multiple-hops per bit) frequency hopping spread spectrum system employing binary
FSK modulation and noncoherent reception in the presence of partial-band noise jamming
and thermal noise. The worst-case error rate performances were obtained numerically and
presented as a function of Ey/Nj with L as a parameter, where Eb/NJ and L are the signal

bit energy-to-jamiming density ratio and the number of hops per bit, respectively.

I. Introduction

Spread spectrum techniques are employed
to protect the communication signals from
detection, demodulation and intentional or
unintentional interferences (or jamming) by
spreading the RF bandwidth well beyond what
is required to transmit the data. There are two
fundamental techniques for achieving band-
width spreading: ‘““direct sequence (DS) pseudo-
noise modulation” and “frequency hopping
(FH)”. The direct sequence modulation
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system is known to be less vulnerable to de-
tection than the FH system. However, this
technique has the disadvantage of requiring
coherent detection over a large spread band-
width and the bandwidth spreading is limited
by current technology of approximately
300 M chips/sec.

The frequency hopping technique, on the
other hand, can achieve extremely wide
bandwidths and the waveforms can be de-
tected noncoherently. Thus, the FH technique
is considered a practical means for achieving
low-detectability or covertness of transmissions.
To improve the degree of covertness, high rate
frequency-hopping systems are employed, in
which the hopping rate is greater than the data
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rate in general. These are referred to as “fast
hop” or ““multi-hops per bit” systems.

In this paper we will study the error rate
performance of a binary frequency-shift keying
(BFSK) fast frequency hopping spread spec-
trum system in the partial-band noise jamming
environment.

Historically, the wuse of the multi-hops
(L-hops) per bit transmission scheme in com-
munications stems from the diversity concept
originally introduced to
channels. [t} +(21,[3] Viterbi

are the first ones who analyzed the error rate

fading
(4]

combat
and Jacobs

performance of the fast hopping system with
noncoherent (square-law combining) reception
on a channel perturbed by partial-band noise
jamming. They neglected thermal noise and
employed the Chernoff bounding technique
to obtain an upper bound to the error pro-
bability. Milstein et al.t5! considered both
jamming and thermal noise for the case of
single-hop per bit (L = 1). A study on multiple
FSK signal reception considered in [{6] em-
ployed multi-hops per bit strategy in both
thermal noise and multiple access interference.
This work is conceptually similar to a special
case (wideband jamming) of our problem.
We will present in this paper a complete
analysis for the performance of L-hops/bit
spread spectrum
frequency-shift

system employing binary
keying (BFSK) modulation

53

in both wideband and optimum jamming
strategies.

II. Waveform and Receiver Description

A binary FSK signal is generated by assign-
ing a burst of sinusoids at one of two fre-
quencies f; (“‘space’) and f, (“mark”), ac-
cording to the incoming binary data of rate
1/T}, bits/sec where Tb is the bit period.
The selected frequency fi’ i=1,2, is then hopped
to one of the frequency channels (commonly
termed as frequency cells) within the total
system bandwidth W and remains there for
the duration of 7 seconds (hop period). At the
end of 7 seconds, the frequency is hopped
again to one of the frequency cells, and this
process is repeated L = Tb/'r times where Tb
is assumed to be an integral multiple of 7.
Thus the hopping rate of this fast frequency
Let B be
the bandwidth occupied by a single hop (or
a single frequency cell).
value of B is approximately 1/r, so that Bt =

hopping waveform is L hops/bit.

Then the intrinsic

1. The total number of frequency cells to
which carrier can be hopped is W/B and the
modulation bandwidth for the binary FSK is
2B.

Figure 1 shows a receiver block diagram for
the BFSK/FH signal employing L-hops/bit
strategy. The received carrier is down-con-
verted (dehopped) by means of a frequency

T
SQUARE LAK r r
ENVELOPE (— 3ol T !
ke

DETECTOR 1

i
|
|
|
|
i X=ry-r;
|
i
|
i
i

M-

SQUARE LAW v
ENVELOPE F— P2

DETECTOR ! k=1

2

Space (f,)
MATCHED
=
FILTER
BANDPASS
FILTER | "(')P
{W=NB)
Mark (fy)
MATCHED
FILTER
FREQUENCY
SYNTHESIZER
A A 4
o0
PSEUDORANDOM
CODE
GENERATOR

\

t = k1,
k=1,2,...,L,
< = hop period

Fig. 1. Noncoherent receiver configuration for BFSK/FH signals with L hops/bit strategy.
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synthesizer controlled by a pseudorandom code
generator. The pseudorandom code is assumed
to be synchronized and identical to that in the
transmitter. The (dehopped) noisy baseband
signal r(t) is then processed by the standard
square-law combining binary FSK receiver as
shown. Note that the matched filter-square law
envelope detector in Fig. 1 is equivalent to the
quadrature receiver which consists of a sum
of the in-phase and quadrature correlator
outputs. It is the purpose of this paper to
assess the error rate performance of this re-
ceiver under both partial-band noise jamming
and thermal noise assumptions.

II1. Probability of Error Analysis

Preliminaries

The binary FSK signal s(t) is assumed to
be, over a kth hop interval (k7, (k+1)7),

( \/QS‘—cos(Zﬂflt+01k), (1a)

s(t) = S
| V28 cos(2mfpt+6,,),  (1b)

where S is the received (average) signal power,
f; and f, are the ‘“‘space” and “mark” fre-
quencies, respectively, and le and 02k are
independent phases uniformly distributed on
(0, 2m). As usual, we assume the transmission
is corrupted by thermal noise (additive white
Gaussian) with spectral density Ng/2 (two-
sided).

The partial-band noise jammer (also
Gaussian) is assumed to have a total power J,
which is uniformly distributed across a frac-
tion 7 of the total spread spectrum bandwidth
W Hz. Thus, a specific hop is received jamming
free with probability 1 - v and perturbed by
jamming noise of density J/(YW) = NJ/'y,
Ny = J/W, with probability y. We assume that
the two adjacent frequency cells of BFSK
(modulation band) are jammed simultaneously
with probability v on each hop.

Since we assume that both the jammer noise
and the thermal noise are Gaussian (and inde-
pendent of each other), the resulting total
noise (jammed or unjammed), nr, is also

Gaussian and its spectral density may be given
by NO with probability 1 - v and N0 + NJ/7
with probability v, where NJ = J/W is the
effective jamming spectral density.

We now define an event Je, where Je =0or
1, such that

0 ; unjammed with Pr(Je=0) =1,
J = (23)
1; jammed with Pr(Je=1) =1, (2b)

Then, the noisy baseband signal r(t), which is
recovered after dehopping, may be represented

as
r(t) = s(t) + ny(t), 3
where the spectral density of nT(t), NT, is given
as
1 .
7N0 ; Je =0 with Pr(Je=0) =1-y,
Np= . (4a)
L—2~(N0 + NJ/'y) ; Je= 1 with Pr(Je=1) =7.
(4b)

General Expression for the Probability of
Error

From Figure 1 the decision statistic is given
by

Ii ( ) % (5a)
X = Ty, =T = Z a
k=1 1k = "2k k=1 k

wheré Lk

envelopes at channel 1 and channel 2, res-

and T, are samples of the squared

pectively, taken at t =kr; k=1, 2, ..., L, where
7 and L are the hop interval and the number
of hops per bit, respectively, and

% & Tk~ Tk (5b)

The decision rule based on the statistic x is
to choose “space” if x > 0 and “mark” if x <
0. Thus, assuming the ‘‘space” and “mark™
symbols are equally likely with probability
1/2 we may write the probability of error

P(e) = % P(elspace) + % P(elmark)
= P(e |space)
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= Pr[ x< 0! space ] =f° Px(alspace) da,

(6)

where px(alspace) is the probability density
function of x given that a ‘“‘space” is trans-
mitted.

To proceed further we require the condi-
tional probability density function px(al space).
We will first obtain the conditional characteris-
tic function of x and then take the inverse
Fourier transform of this characteristic func-
tion to obtain px(ozl space).

The Characteristic Function

We assume the successive hops are inde-
pendent as a result of frequency hopping.
The random variables z;, k = 1,2, ..., L are then
statistically independent and may be assumed
identically distributed. Let CZ(V) denote the
characteristic function of any one of L identi-
cally distributed variables [z} }. Then, using
(5a), we may write the characteristic function
of x as

C, () = E[¢"*]
L L jvzk
= E[exp{ijv kEI 2+ 1 =E[ kgl e 1

L ' .
-7 Ele ky= gz L
k=1

=rc,mIt, Q)

where z represents any one of the variables
{zk, k=1,2,..L}and
c, v =E["?] . (®
The averaging procedure of the characteris-

tic function CZ(V) of (8) may first be performed
with respect to the event J, with the help of

(2),
C, ) =E [¢”2] = Px(J, = 0) E [¢*1] =0]
+Pr(J =1) E [¥21], =1]

=(1-y) C,(vlJ =0) +7 cwli =1,
9
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where
cz(ulJe=0)=E[ein|Je=01 (10a)
C, (1, =1)=E[2I =1] . (10b)

Substituting (9) into (7) and using the binomial
theorem we obtain

C, ) = [(1-7) C,w11,=0) +7 C,wII=D1"

L L 2. L% P
=Q§0 () A=y 7 [C w1 =0)]

[c, w11 =01+, (11)

We note here that the term CZ(V|Je = () re-
presents the characteristic function of the
random variable z (any one of 2y ) in the
absence of jamming, whereas Cz(vlle = 1)
represents that for he case of jamming present.

We now assume without loss of generality
that a space frequency (f;) is transmitted.
Then the r,, and I, in (5b) (see Fig. 1) may
be given by [3, chapter 7]

- 2
= (\/E—Scos 01k + acl)

+(\/ES sinf, +asl)2, (12a)
— a2 2
r2k—ac2+asz, (12b)

where Es is the signal energy associated with
kth hop, the 01k is the phase corresponding
to kth hop, and a,,a,,a,,a, are statisti-
cally independent Gaussian random variables
with Variance 02, where ¢* is given by, in
accordance with (4),

oN® =Ng/2 ;5 1,=0, Px(J =0) = 1,

2 (13a)

g’ = 1
Lop? = (Ng+Np/7) 5 1=1,

Pr(J =1) =17. (13b)

We can immediately see that the variables
rlik and L in (12) are noncentral and central
x“ variables, with two degrees of freedom,
respectively, and their characteristic functions

are given by [7, chapter 4]
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p(r, -r_ ) expansion of (15b) may be written
C,WlI=0=E[¢ ¥ |5 =0]
; 2 4
JVES/(1-120\p) s = 1 (1-2a9)%
==, (14a) i=1

1-(20y* »)?
and

e AT
C, I =1)=E [e 13 =11

E /(14202 »)
=2 / ! (14b)
1- G200 )2 7

where oy* and GT2 are as given in (13). Sub-
stituting (14) into (11) and expanding the
exponential functions which include jv in the
exponents as power series we obtain

L 0 oy (L-Yp
= I () aptylt N T

o oo (Rp™ [(L-YprI"
S N T

) m=0 n=0 m! n! ¢(V) ’
(15a)
where
1 $+m 1 Q
O —— —
< 1+ 20N2v > ‘ ( 14 20N2V >
( 1 L-£+n 1 )L—Q
15 2007y - N 14 2007w
(15b)
where we defined
PN & EfQ207*) = EYN,,, (162)

pr O EJ(207*) =E/(N, +Nj/y).  (16b)

The Probability Density Function

The conditional probability density function
of x, px(a/space), may now be obtained by the
inverse Fourier transform of (15), which
requires the inverse Fourier transform of ¢(v).
An expedient method in doing this is the use
of partial fraction expansion by means of the
calculus of residues. The partial fraction

% ;i A. (1-j2a. 7T 7a)
= . (1-j2a;v)7, (17a
21 = i oA (

where

a = °N2’ ;5 ='°N2’ a3 = UTz, a4 =-0T2,
(17b)

q; =Q+m’ d2 = Q, Q3 = L—Q+n’ dq = L_Q;
(17¢)

and the Air are the partial fraction coefficients
not containing v, For the error probability
expression, only A2r and A ar will be required,
as will be shown shortly.

By taking the inverse Fourier transform of
(15) in accordance with (17) we thus have the
conditional probability density function of
X:

Lo 2. L9
P, (alspace) = Q>=:O (g)a=""ry

-2 -(L-9) oo oo
e pNe( A1 z 2z

m=0 n=0

Eo )™ [(L-Dpp] "

m! n!
[QEH’IA 1 a
__p .
=0 Ir 0N2 2 (——0N2,2r)
L_2Q+n Ay —=p Q.2 >
+ —>P 2 —5;2r ] ;=0
r=0 3o X op?
. (18a)
4
1 -
> A, — P — 21
[FO 2r 0N2 x? (0N2 )
L-2 1 -a .
+ T AP (5520 ] 5a<0,
=0 " or oT (18b)

2

where py2 (u;2r) is the x* density function

with 2r degrees of freedom.

Probability of Error Expression
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Subsnliituti.ng (18b) into (6) and noting that
(1/b) _fo Px?(a/b;21) da=1, we obtain for the
probability of error

P(e) = z () (gLt TN PP

® o (o)™ [(L-Dpp]"

z
m=0 n=0 m! n!
2 L-2
S A, + X A 1Ay T Ay =0
( =0 2r =0 4r ) 4

(19)

Assuming that signal energy per bit, say Eb,
is equally divided among L hops, Es = Eb/L,
we may write py and pr as

pN=EJN_ = E /(N L), (20a)
E 1

PT= No+Nyjy~ 1oy + 1/(vep’ (200)

py= BNy =E,/(NL). (20c)

The coefficients A2r
be (see the Appendix)

and A4r are obtained to

—ly®m L L8+ 1 L0
A= (4 )

H3 (8-1)
@ ! ;r=1,2,..,% (21a)
6 0+ & R 1.1+
Ag= (1) " Gy T
Ha(1-2-1)
L2 ° T L, L-£,  (21b)

where M (moments about the origin), i = 2, 4,
are related to the K (cumulants), i = 2, 4,
through the well-known relations,

+K 2

Mo =1,y =Koy = Ky +K,% s

i=2,4 (22)
and

Kon = (=1 [ (®©m) (3)P+ (L-4m) (350

+ (1) M, (23a)
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kg = (=D [ @m) ()" + 2 P
+L2m PP T, (23b)
with
e L T’ SO I
NO Y NO Y Py

The probability of error expression (19) will
be computed and plotted as a function of
Eb/NJ with Eb/N0 and L as parameters in
conjunction with the optimum jamming
strategy (worst case from communicator’s
viewpoint) to be discussed shortly.

Special Case 1: Single Hop/Bit (L=1)

In this case, the probability of error (19)
reduces to

P(e)=(1-v) e~pN OEO
m=

where PN and Py are as given in (20). We
observe that (24) reduces to the conventional
BFSK result fory =0 or 1.

Special Case 2: No Thermal Noise

The case of no thermal noise ((7N2 = N0/2 =
0) is of particular interest since most of work
related to the present type of problem employ
this assumption [41:(83.191.120) 1y oup for.
mulation it should be possible to obtain the
special case expression by taking the limit
of (19) with Py ™ . The procedure is cum-
bersome, however, due to the complexity of
the error probability expression as a function
of pN- Instead, we repeated the derivation by
imposing the condition of °N2 = N0/2 =0 in
(14). The result is

L -(L-9)
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o [(L-Qyppl" 10
—_— Y . E

. 3 A
0 n! =0 4
k
s =1y, RyPp
[ T e I ] (25)
k=0 :
whree
1= EyNy = Ey/NyD)
= (L L+n Ha(LE-D)
Ag=0) (i 7L 2 e LY,
| - 2
Hao = 1, May=Kap, Kgp =Kggt Ky, .,

Kgp = (h=1)t (L-L+n) B

Equation (25) is an exact expression for the
error probability in the absence of thermal
noise. We note here that Viterbi and Jacobs!!
treated a problem similar to the above and
obtained an upper bound on the error pro-
bability using the Chernoff bounding tech-
nique. However, their analysis assumes a smart
receiver, which knows at each hop whether the
jamming signal is present or not,[11]
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Fig. 2. Worst-case y vs. Ey/Ny.

IV. Computed Performance Results

The most effective jamming strategy is to
distribute the total jamming power J (choose 7)
in such a way as to cause the communicator to
have maximum probability of error. There will
be an optimum value of y(worst-case y from the
communicator’s viewpoint) which will give the
maximum value of error probability (worst-case
error probability). We carried out the maxi-
mization procedure numerically, selecting
Eb/N0 = 13.35 dB and <, for which the pro-
bability of error becomes 10 and zero,
respectively, in the absence of jamming.

Fig. 2 shows the worst-case 7y as a function
of Eb/NJ with L as a parameter. As seen, the
worst-case 7y decreases (almost linearly) with
increasing Eb/NJ. While the worst-case y’s
for L 2 2 are slightly less than those for L =1
for most of the Eb/NJ values shown, there
occur some crossovers in the neighborhood of
Eb/NJ >~ 5dB. It seems that in this range of
Eb/NJ (>~ 5dB) signal bit energy and jamming
density are quite competitive and thus splitting
the bit energy into small pieces results in
small hop energies relative to the jamming
density, causing the crossover phenomena.

We note that the worstcase v, v, for the
case of Eb/N0 = o and L = 1 may be given,
analytically, by Yw = 2/(Eb/NJ)' This can
be shown by differentiating the second term
of (24) with respect to vy and setting the result
equal to zero to find the root for y = vy,
Although the worst-case y’s for other cases
(L#1, Eb/N0 # o0) were numerically obtained,
they all seem to behave in a manner similar
to the case of L = 1 and Eb/No =00, We also
observe that the worst-case v is insensitive to
L and remains virtually unchanged for L = 4.
The worst-case probability of error for L > 4
may thus simply be calculated using the worst-
case ¥Y’s for L =4,

The worst-case error probabilities corres-
ponding to the worst-case y’s are shown in Fig.
3. We readily see that the probability of error
increases, for a given value of Eb/NJ’ as L in-

creases. Note that the curves for Eb/No =
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13.35 dB (solid curves) approach asymptoti-
cally certain values as Eb/NJ approaches oo
(P(e) ~ 107, 3.8x10°5, 8.8x10™5, 1.7x10™,
4.3x10™% for L=1, 2, 3, 4, 6, respectively).
The reason that all the curves do not approach
10 is due to the “combining loss”. The
asymptotic values in Fig. 3 coincide with those
values of P(e) predicted by combining loss
under the thermal noise only case.l??! 1t
seems that the combining loss applies to all
the range of Eb/NJ, as shown.
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Fig. 3. Worst-case P(e) vs. Eb/NJ.

On the other hand, the curves for the no
thermal noise case (shown by dotted curves
for L = 1 and 6 only) are slightly lower than
the solid curves (with corresponding L’s),
serving as good lower bounds to the case of
thermal noise present for lower values of E, /N y
(Ep/Ny S 35 dB). As E,/Nj approaches °e,
however, the error probabilities go to zero,
without any bottoming-out effects.

Finally, Fig. 4 shows the error rate per-
formance comparisons for the cases of worst-
sse 7y (optimum jamming from jammer’s point
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of view) and wideband jamming for L=2. As
a reference, ideal BFSK performance is plotted
with a dotted curve. (For the ideal BFSK curve
the abscissa reads Eb/No). As seen, the worst-
case vy is clearly much more damaging than the
wideband jamming strategy.

1!

T T T T l T T

L = 2 HOPS/BIT

R R

£,/Ng = 13.35 dB (FOR 107° ERROR RATE
WITHOUT JAMMING

PARTIAL BAND NOISE JAMMING

Loega] "

L

T T T T

E‘

T
|

WORST-CASE y

PROBABILITY OF BIT ERROR
L gad

T T

1

IDEAL BFSK
(ND JAMMING)

i Illllkkk]

1 1 1 1 1 1 i
19 1% 20 2 0 38 0 45 50

BIT ENERGY-TO-JAMING DENSITY RATIO (£ /) {e8)

Fig. 4. Optimum jamming and wideband jam-
ming perforamnces for BFSK/FH with
L=2 HOPS/BIT when Eb/No = 13.35
dB. (For ideal BFSK curve the abscissa
reads Eb/No')

V. Conclusion

An analysis has been presented for the
derivation of the probability of error for a
fast hopping (multi-hops per bit) spread spec-
trum system employing binary FSK modulation
in a partial-band jamming environment. The
main contribution of this paper is the complete
derivation of the error probability expression
in the presence of both partial-band jamming
and thermal noise. Most of workers dealing
with these types of problems have simplified
the analysis by making certain assumptions
such as no thermal noise, which is hardly
applicable in real situations. We have obtained
the solution without the simplifying assump-
tions and presented graphical results for both
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wideband and optimum: jamming strategies.

Regarding the variety of prameters and
variables that affect the system performance,
the designers of a multi-hops/bit BFSK/FH
system must take various factors into consi-
OQur results will be very useful in
information to the

deration.
providing necessary
designers of such system.

Appendix
Evaluation of Coefficients Ay, in (17a)

The partial fraction expansion for the type
of (17a) was studied in [13]}. The coefficients
Air are given by [13, Egs. 2.26, 2.25, and 2.24]

=B, u../h!;h= -
Aj(qrh) = Big Hin/h! ih=0,1,2, ., -1
(A.la)

with
4 a. q
B.. = Fid ( ! ) k s
lql k=1 ai—ak
(k#i)

where the moments (about the origin) My, can

(A.1b)

be expressed in terms of the cumulants Kih
as in (22) and the K;p are given by

M1 (A0

4 -a
Kp= (oDl 2 (g (o

(k#i)
Rewriting (A.1) for i = 2, 4 with the substitu-
tion of (17b) and (17¢) and making the change
of variables, h = ¢-r for i = 2 and h = L-R-r for
i=4 we obtain (21) and (23).

al—ak
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