• Title/Summary/Keyword: binary noise

Search Result 323, Processing Time 0.03 seconds

Performance Analysis of AJ and LPI in Chirp Modulation System (Chirp 방식의 LPI 및 AJ 성능 분석)

  • 유흥균
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.119-126
    • /
    • 2002
  • 본 논문에서는 chirp 변조를 이용한 통신 시스템의 LPI(low probability of intercept)와 AJ(anti-jamming)성능을 분석하였다. 인터셉터에 DAM(delay and multiplier)과 SC(squaring circuit)가 이용된 경우 CBPSK(Chirped BPSK)의 LPI 성능을 분석하였다. 스펙트럼 확산 방식의 CBPSK와 DS/BPSK 시스템에 대한 AJ 성능을 비교 분석 및 주파수 호핑 방식의 FH/CBFSK(Chirped BFSK)와 FH/BFSK, 그리고 FH/BCM(Binary Chirp Modulation) 시스템에 대한 AJ 성능을 분석하였다. LPI 결과로, CBPSK(Chirped BPSK)은 chirp 변수인 chirp 주기($T_3$가 커질수록 좋은 LPI 성능을 보인다. AJ 결과로, PBNJ(partial band noise jammer)환경에서 CBPSK 방식이 DS/BPSK 방식에 비하여 AJ 성능이 우수하고, 마찬가지로 FH/CBFSK 방식이 FH/BFSK 방식에 비하여 AJ 성능이 우수함을 시뮬레이션으로 확인하였다.

Segmentation of Millimeter-wave Radiometer Image via Classuncertainty and Region-homogeneity

  • Singh, Manoj Kumar;Tiwary, U.S.;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.862-864
    • /
    • 2003
  • Thresholding is a popular image segmentation method that converts a gray-level image into a binary image. The selection of optimum threshold has remained a challenge over decades. Many image segmentation techniques are developed using information about image in other space rather than the image space itself. Most of the technique based on histogram analysis information-theoretic approaches. In this paper, the criterion function for finding optimal threshold is developed using an intensity-based classuncertainty (a histogram-based property of an image) and region-homogeneity (an image morphology-based property). The theory of the optimum thresholding method is based on postulates that objects manifest themselves with fuzzy boundaries in any digital image acquired by an imaging device. The performance of the proposed method is illustrated on experimental data obtained by W-band millimeter-wave radiometer image under different noise level.

  • PDF

The study of isolation driver for Reversible Power Converter (가역전력변환기 구동의 절연에 관한 연구)

  • Chun, J.H.;Lee, H.W.;Taniguchi, Hatsunori
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1349-1351
    • /
    • 2005
  • In this paper discusses isolation driver of single phase AC-DC reversible power converter The reversible power converter driven by binary combination at different transformer winding ratio by BCD code level. It has a advantage that constructs a control system simply and obtain load current of good quality with out filter circuit and free from noise or isolation for lower switching frequency. In this research, study on current type converter and inverter circuit that consist for possibility of AC-DC/BC-AC multi-level reversible converter.

  • PDF

Spectrally Phase Coded Waveform Discrimination at 10 GHz for Narrow Band Optical CDMA within 100 GHz Spectral Window

  • Seo, Dong-Sun;Supradeepa, V.R.
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.28-32
    • /
    • 2010
  • We demonstrate binary spectral phase coded waveform discrimination at 10 GHz for narrow band optical code-division multiple-access (NB-OCDMA) via direct electrical detection without using any optical hard-limiter. Only 9 phase-locked, 10 GHz spaced, spectral lines within a 100 GHz spectral window are used for the phase coding. Considerably high contrast ratio of 5 between signal and multiuser access interference noise can be achieved for $4{\times}10\;G\;pulse/sec$ timing coordinated OCDMA at a simple electrical receiver with 50 GHz bandwidth.

Wavelet-Based Digital Image Watermarking by Using Lorenz Chaotic Signal Localization

  • Panyavaraporn, Jantana;Horkaew, Paramate
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.169-180
    • /
    • 2019
  • Transmitting visual information over a broadcasting network is not only prone to a copyright violation but also is a forgery. Authenticating such information and protecting its authorship rights call for more advanced data encoding. To this end, electronic watermarking is often adopted to embed inscriptive signature in imaging data. Most existing watermarking methods while focusing on robustness against degradation remain lacking of measurement against security loophole in which the encrypting scheme once discovered may be recreated by an unauthorized party. This could reveal the underlying signature which may potentially be replaced or forged. This paper therefore proposes a novel digital watermarking scheme in temporal-frequency domain. Unlike other typical wavelet based watermarking, the proposed scheme employed the Lorenz chaotic map to specify embedding positions. Effectively making this is not only a formidable method to decrypt but also a stronger will against deterministic attacks. Simulation report herein highlights its strength to withstand spatial and frequent adulterations, e.g., lossy compression, filtering, zooming and noise.

Rich Phase Separation Behavior of Biomolecules

  • Shin, Yongdae
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.6-15
    • /
    • 2022
  • Phase separation is a thermodynamic process leading to the formation of compositionally distinct phases. For the past few years, numerous works have shown that biomolecular phase separation serves as biogenesis mechanisms of diverse intracellular condensates, and aberrant phase transitions are associated with disease states such as neurodegenerative diseases and cancers. Condensates exhibit rich phase behaviors including multiphase internal structuring, noise buffering, and compositional tunability. Recent studies have begun to uncover how a network of intermolecular interactions can give rise to various biophysical features of condensates. Here, we review phase behaviors of biomolecules, particularly with regard to regular solution models of binary and ternary mixtures. We discuss how these theoretical frameworks explain many aspects of the assembly, composition, and miscibility of diverse biomolecular phases, and highlight how a model-based approach can help elucidate the detailed thermodynamic principle for multicomponent intracellular phase separation.

Precise segmentation of fetal head in ultrasound images using improved U-Net model

  • Vimala Nagabotu;Anupama Namburu
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.526-537
    • /
    • 2024
  • Monitoring fetal growth in utero is crucial to anomaly diagnosis. However, current computer-vision models struggle to accurately assess the key metrics (i.e., head circumference and occipitofrontal and biparietal diameters) from ultrasound images, largely owing to a lack of training data. Mitigation usually entails image augmentation (e.g., flipping, rotating, scaling, and translating). Nevertheless, the accuracy of our task remains insufficient. Hence, we offer a U-Net fetal head measurement tool that leverages a hybrid Dice and binary cross-entropy loss to compute the similarity between actual and predicted segmented regions. Ellipse-fitted two-dimensional ultrasound images acquired from the HC18 dataset are input, and their lower feature layers are reused for efficiency. During regression, a novel region of interest pooling layer extracts elliptical feature maps, and during segmentation, feature pyramids fuse field-layer data with a new scale attention method to reduce noise. Performance is measured by Dice similarity, mean pixel accuracy, and mean intersection-over-union, giving 97.90%, 99.18%, and 97.81% scores, respectively, which match or outperform the best U-Net models.

Design of 8bit current steering DAC for stimulating neuron signal (뉴런 신호 자극을 위한 8비트 전류 구동형 DAC)

  • Park, J.H.;Shi, D.;Yoon, K.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.13-18
    • /
    • 2013
  • In this paper design a 8 bit Current Steering D/A Converter for stimulating neuron signal. Proposed circuit in paper shows the conversion rate of 10KS/s and the power supply of 3.3V with 0.35um Magna chip CMOS process using full custom layout design. It employes segmented structure which consists of 3bit thermometer decoders and 5bit binary decoder for decreasing glitch noise and increasing resolution. So glitch energy is down by $10nV{\bullet}sec$ rather than binary weighted type DAC. And it makes use of low power current stimulator because of low LSB current. And it can make biphasic signal by connecting with Micro Controller Unit which controls period and amplitude of signal. As result of measurement INL is +0.56/-0.38 LSB and DNL is +0.3/-0.4 LSB. It shows great linearity. Power dissipation is 6mW.

  • PDF

A Segmentation Method for Counting Microbial Cells in Microscopic Image

  • Kim, Hak-Kyeong;Lee, Sun-Hee;Lee, Myung-Suk;Kim, Sang-Bong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.224-230
    • /
    • 2002
  • In this paper, a counting algorithm hybridized with an adaptive automatic thresholding method based on Otsu's method and the algorithm that elongates markers obtained by the well-known watershed algorithm is proposed to enhance the exactness of the microcell counting in microscopic images. The proposed counting algorithm can be stated as follows. The transformed full image captured by CCD camera set up at microscope is divided into cropped images of m$\times$n blocks with an appropriate size. The thresholding value of the cropped image is obtained by Otsu's method and the image is transformed into binary image. The microbial cell images below prespecified pixels are regarded as noise and are removed in tile binary image. The smoothing procedure is done by the area opening and the morphological filter. Watershed algorithm and the elongating marker algorithm are applied. By repeating the above stated procedure for m$\times$n blocks, the m$\times$n segmented images are obtained. A superposed image with the size of 640$\times$480 pixels as same as original image is obtained from the m$\times$n segmented block images. By labeling the superposed image, the counting result on the image of microbial cells is achieved. To prove the effectiveness of the proposed mettled in counting the microbial cell on the image, we used Acinetobacter sp., a kind of ammonia-oxidizing bacteria, and compared the proposed method with the global Otsu's method the traditional watershed algorithm based on global thresholding value and human visual method. The result counted by the proposed method shows more approximated result to the human visual counting method than the result counted by any other method.

Geometrically Invariant Image Watermarking Using Connected Objects and Gravity Centers

  • Wang, Hongxia;Yin, Bangxu;Zhou, Linna
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2893-2912
    • /
    • 2013
  • The design of geometrically invariant watermarking is one of the most challenging work in digital image watermarking research area. To achieve the robustness to geometrical attacks, the inherent characteristic of an image is usually used. In this paper, a geometrically invariant image watermarking scheme using connected objects and gravity center is proposed. First, the gray-scale image is converted into the binary one, and the connected objects according to the connectedness of binary image are obtained, then the coordinates of these connected objects are mapped to the gray-scale image, and the gravity centers of those bigger objects are chosen as the feature points for watermark embedding. After that, the line between each gravity center and the center of the whole image is rotated an angle to form a sector, and finally the same version of watermark is embedded into these sectors. Because the image connectedness is topologically invariant to geometrical attacks such as scaling and rotation, and the gravity center of the connected object as feature points is very stable, the watermark synchronization is realized successfully under the geometrical distortion. The proposed scheme can extract the watermark information without using the original image or template. The simulation results show the proposed scheme has a good invisibility for watermarking application, and stronger robustness than previous feature-based watermarking schemes against geometrical attacks such as rotation, scaling and cropping, and can also resist common image processing operations including JPEG compression, adding noise, median filtering, and histogram equalization, etc.