DOI QR코드

DOI QR Code

Rich Phase Separation Behavior of Biomolecules

  • Shin, Yongdae (Department of Mechanical Engineering, Seoul National University)
  • Received : 2021.08.01
  • Accepted : 2021.09.10
  • Published : 2022.01.31

Abstract

Phase separation is a thermodynamic process leading to the formation of compositionally distinct phases. For the past few years, numerous works have shown that biomolecular phase separation serves as biogenesis mechanisms of diverse intracellular condensates, and aberrant phase transitions are associated with disease states such as neurodegenerative diseases and cancers. Condensates exhibit rich phase behaviors including multiphase internal structuring, noise buffering, and compositional tunability. Recent studies have begun to uncover how a network of intermolecular interactions can give rise to various biophysical features of condensates. Here, we review phase behaviors of biomolecules, particularly with regard to regular solution models of binary and ternary mixtures. We discuss how these theoretical frameworks explain many aspects of the assembly, composition, and miscibility of diverse biomolecular phases, and highlight how a model-based approach can help elucidate the detailed thermodynamic principle for multicomponent intracellular phase separation.

Keywords

Acknowledgement

This work is supported by the National Research Foundation (NRF) of Korea (NRF-2019R1C1C1006477), the National Convergence Research of Scientific Challenges (NRF-2020M3F7A1094300), and Creative-Pioneering Researchers Program through Seoul National University.

References

  1. Aumiller, W.M., Jr. and Keating, C.D. (2016). Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 8, 129-137. https://doi.org/10.1038/nchem.2414
  2. Banani, S.F., Rice, A.M., Peeples, W.B., Lin, Y., Jain, S., Parker, R., and Rosen, M.K. (2016). Compositional control of phase-separated cellular bodies. Cell 166, 651-663. https://doi.org/10.1016/j.cell.2016.06.010
  3. Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017). Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285-298. https://doi.org/10.1038/nrm.2017.7
  4. Banerjee, P.R., Milin, A.N., Moosa, M.M., Onuchic, P.L., and Deniz, A.A. (2017). Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. Int. Ed. Engl. 56, 11354-11359. https://doi.org/10.1002/anie.201703191
  5. Basu, S., Mackowiak, S.D., Niskanen, H., Knezevic, D., Asimi, V., Grosswendt, S., Geertsema, H., Ali, S., Jerkovic, I., Ewers, H., et al. (2020). Unblending of transcriptional condensates in human repeat expansion disease. Cell 181, 1062-1079.e30. https://doi.org/10.1016/j.cell.2020.04.018
  6. Benedek, G.B. (1997). Cataract as a protein condensation disease: the Proctor Lecture. Invest. Ophthalmol. Vis. Sci. 38, 1911-1921.
  7. Boija, A., Klein, I.A., Sabari, B.R., Dall'Agnese, A., Coffey, E.L., Zamudio, A.V., Li, C.H., Shrinivas, K., Manteiga, J.C., Hannett, N.M., et al. (2018). Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842-1855.e16. https://doi.org/10.1016/j.cell.2018.10.042
  8. Bracha, D., Walls, M.T., Wei, M.T., Zhu, L., Kurian, M., Avalos, J.L., Toettcher, J.E., and Brangwynne, C.P. (2018). Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175, 1467-1480.e13. https://doi.org/10.1016/j.cell.2018.10.048
  9. Brangwynne, C., Mitchison, T., and Hyman, A.A. (2011). Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. U. S. A. 108, 4334-4339. https://doi.org/10.1073/pnas.1017150108
  10. Brangwynne, C.P., Eckmann, C.R., Courson, D.S., Rybarska, A., Hoege, C., Gharakhani, J., Julicher, F., and Hyman, A.A. (2009). Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729-1732. https://doi.org/10.1126/science.1172046
  11. Brangwynne, C.P., Tompa, P., and Pappu, R.V. (2015). Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899-904. https://doi.org/10.1038/nphys3532
  12. Brent, R. and Ptashne, M. (1985). A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43(3 Pt 2), 729-736. https://doi.org/10.1016/0092-8674(85)90246-6
  13. Broide, M.L., Berland, C.R., Pande, J., Ogun, O.O., and Benedek, G.B. (1991). Binary-liquid phase-separation of lens protein solutions. Proc. Natl. Acad. Sci. U. S. A. 88, 5660-5664. https://doi.org/10.1073/pnas.88.13.5660
  14. Buchan, J.R. and Parker, R. (2009). Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36, 932-941. https://doi.org/10.1016/j.molcel.2009.11.020
  15. Burke, K.A., Janke, A.M., Rhine, C.L., and Fawzi, N.L. (2015). Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol. Cell 60, 231-241. https://doi.org/10.1016/j.molcel.2015.09.006
  16. Cai, D., Feliciano, D., Dong, P., Flores, E., Gruebele, M., Porat-Shliom, N., Sukenik, S., Liu, Z., and Lippincott-Schwartz, J. (2019). Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21, 1578-1589. https://doi.org/10.1038/s41556-019-0433-z
  17. Chen, D. and Huang, S. (2001). Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J. Cell Biol. 153, 169-176. https://doi.org/10.1083/jcb.153.1.169
  18. Chen, X., Wu, X., Wu, H., and Zhang, M. (2020). Phase separation at the synapse. Nat. Neurosci. 23, 301-310. https://doi.org/10.1038/s41593-019-0579-9
  19. Cho, W.K., Spille, J.H., Hecht, M., Lee, C., Li, C., Grube, V., and Cisse, I.I. (2018). Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412-415. https://doi.org/10.1126/science.aar4199
  20. Choi, J.M., Holehouse, A.S., and Pappu, R.V. (2020). Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107-133. https://doi.org/10.1146/annurev-biophys-121219-081629
  21. Chujo, T. and Hirose, T. (2017). Nuclear bodies built on architectural long noncoding RNAs: unifying principles of their construction and function. Mol. Cells 40, 889-896. https://doi.org/10.14348/MOLCELLS.2017.0263
  22. Deviri, D. and Safran, S.A. (2021). Physical theory of biological noise buffering by multicomponent phase separation. Proc. Natl. Acad. Sci. U. S. A. 118, e2100099118. https://doi.org/10.1073/pnas.2100099118
  23. Dignon, G.L., Best, R.B., and Mittal, J. (2020). Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53-75. https://doi.org/10.1146/annurev-physchem-071819-113553
  24. Dormann, D., Rodde, R., Edbauer, D., Bentmann, E., Fischer, I., Hruscha, A., Than, M.E., Mackenzie, I.R.A., Capell, A., Schmid, B., et al. (2010). ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 29, 2841-2857. https://doi.org/10.1038/emboj.2010.143
  25. Elbaum-Garfinkle, S., Kim, Y., Szczepaniak, K., Chen, C.C.H., Eckmann, C.R., Myong, S., and Brangwynne, C.P. (2015). The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl. Acad. Sci. U. S. A. 112, 7189-7194. https://doi.org/10.1073/pnas.1504822112
  26. Espinosa, J.R., Joseph, J.A., Sanchez-Burgos, I., Garaizar, A., Frenkel, D., and Collepardo-Guevara, R. (2020). Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components. Proc. Natl. Acad. Sci. U. S. A. 117, 13238-13247. https://doi.org/10.1073/pnas.1917569117
  27. Feric, M., Vaidya, N., Harmon, T.S., Mitrea, D.M., Zhu, L., Richardson, T.M., Kriwacki, R.W., Pappu, R.V., and Brangwynne, C.P. (2016). Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686-1697. https://doi.org/10.1016/j.cell.2016.04.047
  28. Franzmann, T.M., Jahnel, M., Pozniakovsky, A., Mahamid, J., Holehouse, A.S., Nuske, E., Richter, D., Baumeister, W., Grill, S.W., Pappu, R.V., et al. (2018). Phase separation of a yeast prion protein promotes cellular fitness. Science 359, eaao5654. https://doi.org/10.1126/science.aao5654
  29. Freeman Rosenzweig, E.S., Xu, B., Kuhn Cuellar, L., Martinez-Sanchez, A., Schaffer, M., Strauss, M., Cartwright, H.N., Ronceray, P., Plitzko, J.M., Forster, F., et al. (2017). The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell 171, 148-162.e19. https://doi.org/10.1016/j.cell.2017.08.008
  30. Guillen-Boixet, J., Kopach, A., Holehouse, A.S., Wittmann, S., Jahnel, M., Schlussler, R., Kim, K., Trussina, I.R.E.A., Wang, J., Mateju, D., et al. (2020). RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346-361.e17. https://doi.org/10.1016/j.cell.2020.03.049
  31. Harmon, T.S., Holehouse, A.S., Rosen, M.K., and Pappu, R.V. (2017). Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife 6, e30294. https://doi.org/10.7554/elife.30294
  32. Henninger, J.E., Oksuz, O., Shrinivas, K., Sagi, I., LeRoy, G., Zheng, M.M., Andrews, J.O., Zamudio, A.V., Lazaris, C., Hannett, N.M., et al. (2021). RNA-mediated feedback control of transcriptional condensates. Cell 184, 207-225.e24. https://doi.org/10.1016/j.cell.2020.11.030
  33. Hofweber, M., Hutten, S., Bourgeois, B., Spreitzer, E., Niedner-Boblenz, A., Schifferer, M., Ruepp, M.D., Simons, M., Niessing, D., Madl, T., et al. (2018). Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706-719.e13. https://doi.org/10.1016/j.cell.2018.03.004
  34. Hong, S., Choi, S., Kim, R., and Koh, J. (2020). Mechanisms of macromolecular interactions mediated by protein intrinsic disorder. Mol. Cells 43, 899-908. https://doi.org/10.14348/molcells.2020.0186
  35. Ishimoto, C. and Tanaka, T. (1977). Critical behavior of a binary mixture of protein and salt water. Phys. Rev. Lett. 39, 474-477. https://doi.org/10.1103/PhysRevLett.39.474
  36. Jacobs, W.M. and Frenkel, D. (2013). Predicting phase behavior in multicomponent mixtures. J. Chem. Phys. 139, 024108. https://doi.org/10.1063/1.4812461
  37. Jacobs, W.M. and Frenkel, D. (2017). Phase transitions in biological systems with many components. Biophys. J. 112, 683-691. https://doi.org/10.1016/j.bpj.2016.10.043
  38. Jain, S., Wheeler, J.R., Walters, R.W., Agrawal, A., Barsic, A., and Parker, R. (2016). ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487-498. https://doi.org/10.1016/j.cell.2015.12.038
  39. Kanaan, N.M., Hamel, C., Grabinski, T., and Combs, B. (2020). Liquid-liquid phase separation induces pathogenic tau conformations in vitro. Nat. Commun. 11, 2809. https://doi.org/10.1038/s41467-020-16580-3
  40. Kato, M., Han, T.W., Xie, S., Shi, K., Du, X., Wu, L.C., Mirzaei, H., Goldsmith, E.J., Longgood, J., Pei, J., et al. (2012). Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753-767. https://doi.org/10.1016/j.cell.2012.04.017
  41. Klosin, A., Oltsch, F., Harmon, T., Honigmann, A., Julicher, F., Hyman, A.A., and Zechner, C. (2020). Phase separation provides a mechanism to reduce noise in cells. Science 367, 464-468. https://doi.org/10.1126/science.aav6691
  42. Lafontaine, D.L.J., Riback, J.A., Bascetin, R., and Brangwynne, C.P. (2021). The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165-182. https://doi.org/10.1038/s41580-020-0272-6
  43. Lallemand-Breitenbach, V. and de The, H. (2018). PML nuclear bodies: from architecture to function. Curr. Opin. Cell Biol. 52, 154-161. https://doi.org/10.1016/j.ceb.2018.03.011
  44. Li, P., Banjade, S., Cheng, H., Kim, S., Chen, B., Guo, L., Llaguno, M., Hollingsworth, J.V., King, D.S., Banani, S.F., et al. (2012). Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336-340. https://doi.org/10.1038/nature10879
  45. Lin, Y.H., Forman-Kay, J.D., and Chan, H.S. (2016). Sequence-specific polyampholyte phase separation in membraneless organelles. Phys. Rev. Lett. 117, 178101. https://doi.org/10.1103/physrevlett.117.178101
  46. Lin, Y., Protter, D.S.W., Rosen, M.K., and Parker, R. (2015). Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208-219. https://doi.org/10.1016/j.molcel.2015.08.018
  47. Lu, T. and Spruijt, E. (2020). Multiphase complex coacervate droplets. J. Am. Chem. Soc. 142, 2905-2914. https://doi.org/10.1021/jacs.9b11468
  48. Maharana, S., Wang, J., Papadopoulos, D.K., Richter, D., Pozniakovsky, A., Poser, I., Bickle, M., Rizk, S., Guillen-Boixet, J., Franzmann, T., et al. (2018). RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918-921. https://doi.org/10.1126/science.aar7366
  49. Mathieu, C., Pappu, R.V., and Taylor, J.P. (2020). Beyond aggregation: pathological phase transitions in neurodegenerative disease. Science 370, 56-60. https://doi.org/10.1126/science.abb8032
  50. Mao, Y.S., Zhang, B., and Spector, D.L. (2011). Biogenesis and function of nuclear bodies. Trends Genet. 27, 295-306. https://doi.org/10.1016/j.tig.2011.05.006
  51. McSwiggen, D.T., Mir, M., Darzacq, X., and Tjian, R. (2019). Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619-1634. https://doi.org/10.1101/gad.331520.119
  52. Meijering, J.L. (1950). Segregation in regular ternary solutions. Philips Res. Rep. 5, 335-356.
  53. Milo, R. (2013). What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays 35, 1050-1055. https://doi.org/10.1002/bies.201300066
  54. Mollet, S., Cougot, N., Wilczynska, A., Dautry, F., Kress, M., Bertrand, E., and Weil, D. (2008). Translationally repressed mRNA transiently cycles through stress granules during stress. Mol. Biol. Cell 19, 4469-4479. https://doi.org/10.1091/mbc.E08-05-0499
  55. Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A.P., Kim, H.J., Mittag, T., and Taylor, J.P. (2015). Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123-133. https://doi.org/10.1016/j.cell.2015.09.015
  56. Monahan, Z., Ryan, V.H., Janke, A.M., Burke, K.A., Rhoads, S.N., Zerze, G.H., O'Meally, R., Dignon, G.L., Conicella, A.E., Zheng, W., et al. (2017). Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951-2967. https://doi.org/10.15252/embj.201696394
  57. Murakami, T., Qamar, S., Lin, J.Q., Schierle, G.S., Rees, E., Miyashita, A., Costa, A.R., Dodd, R.B., Chan, F.T., Michel, C.H., et al. (2015). ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678-690. https://doi.org/10.1016/j.neuron.2015.10.030
  58. Murthy, A.C., Dignon, G.L., Kan, Y., Zerze, G.H., Parekh, S.H., Mittal, J., and Fawzi, N.L. (2019). Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637-648. https://doi.org/10.1038/s41594-019-0250-x
  59. Nott, T.J., Petsalaki, E., Farber, P., Jervis, D., Fussner, E., Plochowietz, A., Craggs, T.D., Bazett-Jones, D.P., Pawson, T., Forman-Kay, J.D., et al. (2015). Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936-947. https://doi.org/10.1016/j.molcel.2015.01.013
  60. Nott, T.J., Craggs, T.D., and Baldwin, A.J. (2016). Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat. Chem. 8, 569-575. https://doi.org/10.1038/nchem.2519
  61. Pak, C.W., Kosno, M., Holehouse, A.S., Padrick, S.B., Mittal, A., Ali, R., Yunus, A.A., Liu, D.R., Pappu, R.V., and Rosen, M.K. (2016). Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72-85. https://doi.org/10.1016/j.molcel.2016.05.042
  62. Patel, A., Lee, H.O., Jawerth, L., Maharana, S., Jahnel, M., Hein, M.Y., Stoynov, S., Mahamid, J., Saha, S., Franzmann, T.M., et al. (2015). A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066-1077. https://doi.org/10.1016/j.cell.2015.07.047
  63. Peeples, W. and Rosen, M.K. (2021). Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol. 17, 693-702. https://doi.org/10.1038/s41589-021-00801-x
  64. Posey, A.E., Holehouse, A.S., and Pappu, R.V. (2018). Phase separation of intrinsically disordered proteins. Methods Enzymol. 611, 1-30. https://doi.org/10.1016/bs.mie.2018.09.035
  65. Qamar, S., Wang, G.Z., Randle, S.J., Ruggeri, F.S., Varela, J.A., Lin, J.Q., Phillips, E.C., Miyashita, A., Williams, D., Strohl, F., et al. (2018). FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720-734.e15. https://doi.org/10.1016/j.cell.2018.03.056
  66. Rai, A.K., Chen, J., Selbach, M., and Pelkmans, L. (2018). Kinase-controlled phase transition of membraneless organelles in mitosis. Nature 559, 211-216. https://doi.org/10.1038/s41586-018-0279-8
  67. Ray, S., Singh, N., Kumar, R., Patel, K., Pandey, S., Datta, D., Mahato, J., Panigrahi, R., Navalkar, A., Mehra, S., et al. (2020). α-Synuclein aggregation nucleates through liquid-liquid phase separation. Nat. Chem. 12, 705-716. https://doi.org/10.1038/s41557-020-0465-9
  68. Riback, J.A., Zhu, L., Ferrolino, M.C., Tolbert, M., Mitrea, D.M., Sanders, D.W., Wei, M., Kriwacki, R.W., and Brangwynne, C.P. (2020). Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209-214. https://doi.org/10.1038/s41586-020-2256-2
  69. Rubinstein, M. and Colby, R.H. (2003). Polymer Physics (Oxford: Oxford University Press).
  70. Ruff, K.M., Dar, F., and Pappu, R.V. (2021). Ligand effects on phase separation of multivalent macromolecules. Proc. Natl. Acad. Sci. U. S. A. 118, e2017184118. https://doi.org/10.1073/pnas.2017184118
  71. Ryan, V.H., Dignon, G.L., Zerze, G.H., Chabata, C.V., Silva, R., Conicella, A.E., Amaya, J., Burke, K.A., Mittal, J., and Fawzi, N.L. (2018). Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 69, 465-479.e7. https://doi.org/10.1016/j.molcel.2017.12.022
  72. Sabari, B.R., Dall'Agnese, A., Boija, A., Klein, I.A., Coffey, E.L., Shrinivas, K., Abraham, B.J., Hannett, N.M., Zamudio, A.V., Manteiga, J.C., et al. (2018). Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958. https://doi.org/10.1126/science.aar3958
  73. Sanders, D.W., Kedersha, N., Lee, D.S.W., Strom, A.R., Drake, V., Riback, J.A., Bracha, D., Eeftens, J.M., Iwanicki, A., Wang, A., et al. (2020). Competing protein-RNA interaction networks control multiphase intracellular organization. Cell 181, 306-324.e28. https://doi.org/10.1016/j.cell.2020.03.050
  74. Sear, R.P. and Cuesta, J.A. (2003). Instabilities in complex mixtures with a large number of components. Phys. Rev. Lett. 91, 245701. https://doi.org/10.1103/PhysRevLett.91.245701
  75. Shin, Y. and Brangwynne, C.P. (2017). Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382. https://doi.org/10.1126/science.aaf4382
  76. Shin, Y., Berry, J., Pannucci, N., Haataja, M.P., Toettcher, J.E., and Brangwynne, C.P. (2017). Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159-171.e14. https://doi.org/10.1016/j.cell.2016.11.054
  77. Simon, J.R., Carroll, N.J., Rubinstein, M., Chilkoti, A., and Lopez, G.P. (2017). Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9, 509-515. https://doi.org/10.1038/nchem.2715
  78. Snead, W.T. and Gladfelter, A.S. (2019). The control centers of biomolecular phase separation: how membrane surfaces, PTMs, and active processes regulate condensation. Mol. Cell 76, 295-305. https://doi.org/10.1016/j.molcel.2019.09.016
  79. Strom, A.R., Emelyanov, A.V., Mir, M., Fyodorov, D.V., Darzacq, X., and Karpen, G.H. (2017). Phase separation drives heterochromatin domain formation. Nature 547, 241-245. https://doi.org/10.1038/nature22989
  80. Su, X., Ditlev, J.A., Hui, E., Xing, W., Banjade, S., Okrut, J., King, D.S., Taunton, J., Rosen, M.K., and Vale, R.D. (2016). Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595-599. https://doi.org/10.1126/science.aad9964
  81. Thomson, J.A., Schurtenberger, P., Thurston, G.M., and Benedek, G.B. (1987). Binary liquid phase separation and critical phenomena in a protein/water solution. Proc. Natl. Acad. Sci. U. S. A. 84, 7079-7083. https://doi.org/10.1073/pnas.84.20.7079
  82. Thul, P.J., Akesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., Alm, T., Asplund, A., Bjork, L., Breckels, L.M., et al. (2017). A subcellular map of the human proteome. Science 356, eaal3321. https://doi.org/10.1126/science.aal3321
  83. Tompa, P. (2012). Intrinsically disordered proteins: a 10-year recap. Trends Biochem. Sci. 37, 509-516. https://doi.org/10.1016/j.tibs.2012.08.004
  84. Ukmar-Godec, T., Hutten, S., Grieshop, M.P., Rezaei-Ghaleh, N., Cima-Omori, M.S., Biernat, J., Mandelkow, E., Soding, J., Dormann, D., and Zweckstetter, M. (2019). Lysine/RNA-interactions drive and regulate biomolecular condensation. Nat. Commun. 10, 2909. https://doi.org/10.1038/s41467-019-10792-y
  85. Uversky, V.N. (2017). Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr. Opin. Struct. Biol. 44, 18-30. https://doi.org/10.1016/j.sbi.2016.10.015
  86. Uversky, V.N. (2021). Recent developments in the field of intrinsically disordered proteins: intrinsic disorder-based emergence in cellular biology in light of the physiological and pathological liquid-liquid phase transitions. Annu. Rev. Biophys. 50, 135-156. https://doi.org/10.1146/annurev-biophys-062920-063704
  87. Wang, J., Choi, J.M., Holehouse, A.S., Lee, H.O., Zhang, X., Jahnel, M., Maharana, S., Lemaitre, R., Pozniakovsky, A., Drechsel, D., et al. (2018). A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688-699.e16. https://doi.org/10.1016/j.cell.2018.06.006
  88. Weber, S.C. and Brangwynne, C.P. (2015). Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr. Biol. 25, 641-646. https://doi.org/10.1016/j.cub.2015.01.012
  89. Wei, M.T., Elbaum-Garfinkle, S., Holehouse, A.S., Chen, C.C.H., Feric, M., Arnold, C.B., Priestley, R.D., Pappu, R.V., and Brangwynne, C.P. (2017). Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat. Chem. 9, 1118-1125. https://doi.org/10.1038/nchem.2803
  90. Wei, M.T., Chang, Y.C., Shimobayashi, S.F., Shin, Y., Strom, A.R., and Brangwynne, C.P. (2020). Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol. 22, 1187-1196. https://doi.org/10.1038/s41556-020-00578-6
  91. Weidtkamp-Peters, S., Lenser, T., Negorev, D., Gerstner, N., Hofmann, T.G., Schwanitz, G., Hoischen, C., Maul, G., Dittrich, P., and Hemmerich, P. (2008). Dynamics of component exchange at PML nuclear bodies. J. Cell Sci. 121, 2731-2743. https://doi.org/10.1242/jcs.031922
  92. Wiedner, H.J. and Giudice, J. (2021). It's not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat. Struct. Mol. Biol. 28, 465-473. https://doi.org/10.1038/s41594-021-00601-w
  93. Wilfling, F., Lee, C.W., Erdmann, P.S., Zheng, Y., Sherpa, D., Jentsch, S., Pfander, B., Schulman, B.A., and Baumeister, W. (2020). A selective autophagy pathway for phase-separated endocytic protein deposits. Mol. Cell 80, 764-778.e7. https://doi.org/10.1016/j.molcel.2020.10.030
  94. Yamazaki, T., Souquere, S., Chujo, T., Kobelke, S., Chong, Y.S., Fox, A.H., Bond, C.S., Nakagawa, S., Pierron, G., and Hirose, T. (2018). Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70, 1038-1053.e7. https://doi.org/10.1016/j.molcel.2018.05.019
  95. Yang, P., Mathieu, C., Kolaitis, R.M., Zhang, P., Messing, J., Yurtsever, U., Yang, Z., Wu, J., Li, Y., Pan, Q., et al. (2020). G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 181, 325-345.e28. https://doi.org/10.1016/j.cell.2020.03.046
  96. Yasuda, S., Tsuchiya, H., Kaiho, A., Guo, Q., Ikeuchi, K., Endo, A., Arai, N., Ohtake, F., Murata, S., Inada, T., et al. (2020). Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578, 296-300. https://doi.org/10.1038/s41586-020-1982-9
  97. Zamudio, A.V., Dall'Agnese, A., Henninger, J.E., Manteiga, J.C., Afeyan, L.K., Hannett, N.M., Coffey, E.L., Li, C.H., Oksuz, O., Sabari, B.R., et al. (2019). Mediator condensates localize signaling factors to key cell identity genes. Mol. Cell 76, 753-766.e6. https://doi.org/10.1016/j.molcel.2019.08.016
  98. Zeng, M., Shang, Y., Araki, Y., Guo, T., Huganir, R.L., and Zhang, M. (2016). Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166, 1163-1175.e12. https://doi.org/10.1016/j.cell.2016.07.008
  99. Zhang, G., Wang, Z., Du, Z., and Zhang, H. (2018). mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 174, 1492-1506.e22. https://doi.org/10.1016/j.cell.2018.08.006
  100. Zhang, J.Z., Lu, T.W., Stolerman, L.M., Tenner, B., Yang, J.R., Zhang, J.F., Falcke, M., Rangamani, P., Taylor, S.S., Mehta, S., et al. (2020). Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling. Cell 182, 1531-1544.e15. https://doi.org/10.1016/j.cell.2020.07.043
  101. Zhu, L., Richardson, T.M., Wacheul, L., Wei, M.T., Feric, M., Whitney, G., Lafontaine, D.L.J., and Brangwynne, C.P. (2019). Controlling the material properties and rRNA processing function of the nucleolus using light. Proc. Natl. Acad. Sci. U. S. A. 116, 17330-17335. https://doi.org/10.1073/pnas.1903870116