• Title/Summary/Keyword: binary encoding

Search Result 129, Processing Time 0.032 seconds

Fast Algorithms for Binary Dilation and Erosion Using Run-Length Encoding

  • Kim, Wook-Joong;Kim, Seong-Dae;Kim, Kyu-Heon
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.814-817
    • /
    • 2005
  • Fast binary dilation and erosion algorithms using run-length encoding (RLE) are proposed. RLE is an alternative way of representing a binary image using a run, which is a sequence of '1' pixels. First, we derive the run-based representation of dilation and erosion and then present the full steps of the proposed algorithms in detail.

  • PDF

Effect of Changing the Basis in Genetic Algorithms Using Binary Encoding

  • Kim, Yong-Hyuk;Yoon, You-Rim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.4
    • /
    • pp.184-193
    • /
    • 2008
  • We examine the performance of genetic algorithms using binary encoding, with respect to a change of basis. Changing the basis can result in a change in the linkage structure inherent in the fitness function. We test three simple functions with differing linkage strengths and analyze the results. Based on an empirical analysis, we show that a better basis results in a smoother fitness landscape, hence genetic algorithms based on the new encoding method provide better performance.

A Joint Transform Correlator Encryption System Based on Binary Encoding for Grayscale Images

  • Peng, Kaifei;Shen, Xueju;Huang, Fuyu;He, Xuan
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.548-554
    • /
    • 2019
  • A binary encoding method for grayscale images is proposed to address their unsatisfactory decryption results from joint transform correlator (JTC) encryption systems. The method converts the encryption and decryption of grayscale images into that of binary images, and effectively improves decrypted-image quality. In the simulation, we replaced unencoded grayscale images with their binary encoded counterparts in the JTC encryption and decryption processes, then adopted a median filter to suppress saturation noise while keeping other settings unchanged. Accordingly, decrypted-image quality was clearly enhanced as the correlation coefficient (CC) between a decrypted image and its original rose from 0.8237 to 0.9473 initially, and then further to 0.9937, following the above two steps respectively. Finally, optical experimental results confirmed that the proposed encryption system works correctly.

Low Latency Encoding Algorithm for Duo-Binary Turbo Codes with Tall Biting Trellises (이중 입력 터보 코드를 위한 저지연 부호화 알고리즘)

  • Park, Soak-Min;Kwak, Jae-Young;Lee, Kwy-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.117-118
    • /
    • 2008
  • The low latency encoder for high data rate duo-binary turbo codes with tail biting trellises is considered. Encoder hardware architecture is proposed using inherent encoding property of duo-binary turbo codes. And we showed that half of execution time as well as the energy can be reduced with the proposed architecture.

  • PDF

A Method for Automatic Detection of Character Encoding of Multi Language Document File (다중 언어로 작성된 문서 파일에 적용된 문자 인코딩 자동 인식 기법)

  • Seo, Min Ji;Kim, Myung Ho
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.4
    • /
    • pp.170-177
    • /
    • 2016
  • Character encoding is a method for changing a document to a binary document file using the code table for storage in a computer. When people decode a binary document file in a computer to be read, they must know the code table applied to the file at the encoding stage in order to get the original document. Identifying the code table used for encoding the file is thus an essential part of decoding. In this paper, we propose a method for detecting the character code of the given binary document file automatically. The method uses many techniques to increase the detection rate, such as a character code range detection, escape character detection, character code characteristic detection, and commonly used word detection. The commonly used word detection method uses multiple word database, which means this method can achieve a much higher detection rate for multi-language files as compared with other methods. If the proportion of language is 20% less than in the document, the conventional method has about 50% encoding recognition. In the case of the proposed method, regardless of the proportion of language, there is up to 96% encoding recognition.

Reconstruction of Color-Volume Data for Three-Dimensional Human Anatomic Atlas (3차원 인체 해부도 작성을 위한 칼라 볼륨 데이터의 입체 영상 재구성)

  • 김보형;이철희
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.199-210
    • /
    • 1998
  • In this paper, we present a 3D reconstruction method of color volume data for a computerized human atlas. Binary volume rendering which takes the advantages of object-order ray traversal and run-length encoding visualizes 3D organs at an interactive speed in a general PC without the help of specific hardwares. This rendering method improves the rendering speed by simplifying the determination of the pixel value of an intermediate depth image and applying newly developed normal vector calculation method. Moreover, we describe the 3D boundary encoding that reduces the involved data considerably without the penalty of image quality. The interactive speed of the binary rendering and the storage efficiency of 3D boundary encoding will accelerate the development of the PC-based human atlas.

  • PDF

A Study for Global Optimization Using Dynamic Encoding Algorithm for Searches

  • Kim, Nam-Geun;Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.857-862
    • /
    • 2004
  • This paper analyzes properties of the recently developed nonlinear optimization method, Dynamic Encoding Algorithm for Searches (DEAS) [1]. DEAS locates local minima with binary strings (or binary matrices for multi-dimensional problems) by iterating the two operators; bisectional search (BSS) and unidirectional search (UDS). BSS increases binary strings by one digit (i.e., zero or one), while UDS performs increment or decrement to binary strings with no change of string length. Owing to these search routines, DEAS retains the optimization capability that combines the special features of several conventional optimization methods. In this paper, a special feature of BSS and UDS in DEAS is analyzed. In addition, a effective global search strategy is established by using information of DEAS. Effectiveness of the proposed global search strategy is validated through the well-known benchmark functions.

  • PDF

Low Latency Encoding Algorithm for Duo-Binary Turbo Codes with Tail Biting Trellises (이중 입력 터보 코드를 위한 저지연 부호화 알고리즘)

  • Park, Sook-Min;Kwak, Jae-Young;Lee, Kwy-Ro
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.47-51
    • /
    • 2009
  • The low latency encoder for high data rate duo-binary turbo codes with tail biting trellises is considered. Encoder hardware architecture is proposed using inherent encoding property of duo-binary turbo codes. And we showed that half of execution time as well as the energy can be reduced with the proposed architecture.

Hardware Implementation of HEVC CABAC Binary Arithmetic Encoder

  • Pham, Duyen Hai;Moon, Jeonhak;Kim, Doohwan;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.630-635
    • /
    • 2014
  • In this paper, hardware architecture of BAE (binary arithmetic encoder) was proposed for HEVC (high efficiency video coding) CABAC (context-based adaptive binary arithmetic coding) encoder. It can encode each bin in a single cycle. It consists of controller, regular encoding engine, bypass encoding engine, and termination engine. The proposed BAE was designed in Verilog HDL, and it was implemented in 180 nm technology. Its operating speed, gate count, and power consumption are 180 MHz, 3,690 gates, and 2.88 mW, respectively.

Discriminative and Non-User Specific Binary Biometric Representation via Linearly-Separable SubCode Encoding-based Discretization

  • Lim, Meng-Hui;Teoh, Andrew Beng Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.374-388
    • /
    • 2011
  • Biometric discretization is a process of transforming continuous biometric features of an identity into a binary bit string. This paper mainly focuses on improving the global discretization method - a discretization method that does not base on information specific to each user in bitstring extraction, which appears to be important in applications that prioritize strong security provision and strong privacy protection. In particular, we demonstrate how the actual performance of a global discretization could further be improved by embedding a global discriminative feature selection method and a Linearly Separable Subcode-based encoding technique. In addition, we examine a number of discriminative feature selection measures that can reliably be used for such discretization. Lastly, encouraging empirical results vindicate the feasibility of our approach.