2009 3% M5 ==X M 46 A SCH A 2 2

=& 2009-46SC-2-8

0]
H

2 HE mmg 98 AN 253 FeE

(Low Latency Encoding Algorithm for Duo-Binary Turbo Codes with
Tail Biting Trellises)

ol%

A

u} &

ot 2
b T

y 1

A 3

O] ﬂ i**
(Sook Min Park, Jaeyoung Kwak, and Kwyro Lee)

Q%

E =82 0% 4898 /MR HE IT P24 e ATFEA tail-biting 71 ENA ZEAH 22 LatencyE F0lT HE ¥3%
daaE ¢ 6}5%1012 Attt Mobile WiMAX 2 DVB-RCS S9] 444 o|F 99 HE $37]9 314 S4E o
wE g sl=dolz T A tail-biting 71ES A8 22F Latency S 71F o] & 47%E Fol= T4 HY ii%}
= ZAE ANFHY

o

Abstract

The low latency encoder for high data rate duo-binary turbo codes with tail biting trellises is considered. Encoder
hardware architecture is proposed using inherent encoding property of duo-binary turbo codes. And we showed that half
of execution time as well as the energy can be reduced with the proposed architecture.

Keywords : Turbo Codes, Duo-Binary, Tail-Biting, Low Latency

1. Introduction

47

m is the number of the shift registers of the

We focus on the duo-binary turbo encoder
structure with tail biting trellises.
structure of duo-binary turbo codes is same as
binary one that
convolutional(RSC)
concatenated via an interleaver. For terminating each
component RSC code, all the codewords are encoded
with the trellis starting at state zero. After N
information bits have been encoded, at the end of the
trellis, m termination bits have to be appended to the
codeword to terminate the trellis to state zero. Here,

The general

two recursive systematic

component codes are parallel

" A9, AAEA
(Samsung Electronics Co., Ltd.)
*AY, A=A &Y
(KAIST)

Hedak 20089104€31Y, FA 48U 20099345

(143)

component RSC code. To make each shift registers
zero state, recursive feedback of RSC code goes
directly through the the
termination bits do not have any information and a

encoder. Therefore,
rate loss occurs by the termination. To avoid this
rate loss, tail biting RSC codes is proposed instead of
terminated RSC codes" ™. In tail biting RSC code,
the trellis does not start and end at zero state.
However, it is required that the initial state of a
codeword is the same as the ending state. So, the
code rate is higher than a terminated RSC code by
eliminating the additional tail bits for termination.
This scheme is accepted in the applications for high
data rate transmission such as mobile WiMAX (IEEE
802.16¢™). Although tail biting method prevents data
rate loss for additional termination bits, it makes
encoding time twice to find an initial state which is

48

same as the last state. To improve encoding delay,
we focus on the calculation to meet the tail biting
boundary condition, S¢=Sy, and propose the low
latency encoder algorithm for high data rate
applications.

In the following of
duo-binary turbo codes with tail biting trellises are
described. Then we propose low latency encoder
algorithm for the duo-binary turbo codes in the
application of mobile WIMAX(IEEE 802.16e). And low
latency encoder algorithm is also represented to an

section the principles

efficient hardware architecture in the aspect of
latency and power.

I. Low latency encoding algorithm for
802.16e duo—binary turbo codes

In this section we propose the low latency encoding
algorithm using the inherent characteristic of 802.16e
encoder structure. First, we examine the inherent
characteristic of 802.16e encoder structure. Then the
low latency encoding algorithm and its hardware
architecture will be described.

1. Characteristics of 802.16e duo—binary
encoder with tail biting trellises

We will consider the duo-binary RSC encoder of
Figure 1. The sequence of u=(u, ug, -, un-1) denotes
information symbol sequence and each information
symbol consists of bit couple of w, = (ul,ul).
Hence, the information sequence can be represented
as follows:

— 0 1 0 1 0 1 0 1
u= (UOa Uy Upy Ups =y Uy Upys * 5 Uy 15 uN—l) (1)

Here N is the number of symbols in one frame,
which is fed to each RSC encoder. The state space
representation of the encoder is represented as
follows:

Sp+1=AS,+Bul ©

0|3 Y B Z=E 9

(144)

vI'=08 +Dul

The complete solution of can be calculated by the
superposition of the zero input solution S, = A"S,

n—1
S a-1-0g,T
0

1=

[zs] _

and the zero state solution S

5, = S+ S = AnS, + DA OB (@)
i=0

The right part in (4) consists of the initial state
calculation and the zero-state calculation. By
calculating Sn=Sp in (4) we can calculate the initial
state which is the same as the last state. So, (4)
becomes our final calculation to meet the basic tail
biting encoding property.

n—1

(A"+)8 =Y, 40 9T

i=0

()

where I, denotes the (mxm) identity matrix. In the
equations of (2) and (3), we can extract AB,C and D
matrices from 802.16e encoder structure of Figure 1
as follows:,

101 11 000 10
4=|1 0 0{B=|0 1|C=|0 0 0[D=|0 1{(6)
010 01 110 11

We can find an important clue in the characteristic
of A matrix to reduce the encoding latency for tail
biting method. Multiplication of matrix A repeats
every 7 times, since A" = L Here I is the identical
matrix. Using above property, the low latency
algorithm can be devised.

w | X 5 N ’
d 2] R o WA AY
LR Y ‘E_* v,
i LI
P
RN Pl v
*y
a2 1. 80216e O|F ¢ E|E 3=L TM ST 2
e
Fig. 1. Constituent RSC Encoder for 802.16e

Duo-Binary Turbo Codes.

20094 38 HASSHE =X A 46 F SCH A 2 &

2. Low latency encoding algorithm for 802.16e
duo—binary turbo codes
To find initial state which satisfy the tail biting
boundary condition, ie. sx=so, we should find zero
state solution of right part in Equation (5). Zero state
solution for given data sequence is described in the
Equation (7)

N-1 4
ST[LZS] =Y 4 W=1-0 gy, T

=0 (7)
=AY 'Buy+ AV *Bu,++ ABuy_,+ Buy_,
In this formula, we can see that matrix

calculations should be performed per every given data
at each time. Once SJ[VZS] is computed from A’ = L
Equation (7), we can easily find initial state in
Equation (5) by using lookup table. Since the
conventional tail biting method accumulates the input
sequence serially, it executes matrix calculation every
cycle. Additionally it consumes cycle time as much
as input sequence frame length. We utilize the
characteristic of A matrix to reduce the latency and

power consumption. Equation (7) can be rewritten as

®.

S][\,;s]zA(N“l)%7B(u0+u7+u14+...)
+ AV By + s g o)
4o

+A(N_6)%7B(u5+u12+u19+"')

+A(N77)%7B(U6+U13+u21 +)

®

In Equation (8), input sequence, u is classified into
7 groups, which have same remainder value of n
modulo 7. Each group is multiplied by
A(N—n%7<-1)%7. A(an%7‘1)%7 can be
described in one of 7 combinations, ie. B, AB, A®B,
A’B, A'B, A’B, and A"B using the property of A’=L
We carry out the input accumulation first followed by
matrix calculation. In conventional tail biting
procedure, input needs matrix
calculation of A" '"™B. This architecture not
only saves the unnecessary matrix calculation for
every receiving data but also reduce the calculation
time if we use parallel input. Equation (8) can be

Here

every symbol

(145)

49

implemented as a simple hardware. It can be
separated into two independent parts. One is the
accumulation part of input sequence, and the other is
the matrix calculation part with A, B matrices and
accumulated input data. At first, the input sequences
are accumulated in accumulation part. We considered
parallel calculation that 16 or 32 data bits pass to
encoder. We denote this bit width as W. This input
sequence generates 7 accumulated data for next
matrix calculation. The matrix calculation part
executes matrix calculation with these 7 accumulated
data and already calculated matrix, which are B, AB,
AZB, A%B, A4B, A°B, and AB. Since we already
know A and B matrices from encoder structure, these
7 values can be calculated prior to encoding process
and also implemented in simple hardware. Finally the
output becomes the final state. In the following
section, we describe the low latency hardware
architecture for computing zero state solution in
Equation (8).

3. Hardware Architecture

We focus on the calculation of last state which
takes time as much as real encoding step. The task
of this step is to find last state after all the input
data are encoded. The designed hardware
partitioned into two parts, input accumulation and
matrix calculation in the (8). Whenever the data are

ready input accumulator works to accumulate all the

18

input. After the last input is accumulated, matrix
calculation is executed only once. Figure 2 shows the
detailed architecture. Here W is the width of parallel
input data, and we assumed W=16 in this case. In
many case, input data are saved to then memory and
these go to the encoder. Many system use the bus
width as 16 or 32, so we set 16 as our example. We
have 7 matrices combinations(B, AB, A’B, A’B, A'B,
AB, and AB) and 2 bits per input symbol (ul,u})
per each matrix, so we need 14 accumulators. In the
case of W=16, first 14 bhits are passed to the
accumulator and remaining two bits should be
EXORed with first two bits, after that these are

50

accumulated. At the next cycle, the latched outputs
are shifted one bit and then passed through EXOR
block with next 16 incoming input data. As shown in

Figure 2, we prepare 14 accumulators but the input

bits are 16. We separate u. and u., so 8 input bits

go to 7 accumulators each. One input bit is
overlapped each, and to align the bit position,
accumulated data need to be shifted one bit for next
accumulation. These are continued until the end of
input data. In this example, we do 1 bit shift,
however, the general shift value is (W/2 -E). When
the last input data block is accumulated, those values
are re-arranged by the barrel shift in the matrix
calculation block. As input bit width W/2=8 and
number of accumulator E=7 are not matching, shift
was executed every cycle. This also generates the
shifted accumulated output. So we need to reverse
back this output. In general, shift value
(N-1)/WX%E, where is the biggest integer. Finally,
these data are added by final EXOR to make the last
state. This EXOR function is pre-defined by the B,
AB, A’B, A’B, A'B, AB, and A°B easily. By
implementing low latency encoder in real hardware,

is

we can get the benefit of latency and power
consumption. Table 1 shows the implementation
results. W=16 and W=32 denote number of bits which
are calculated at the same time. Implemented
hardware can be partitioned into two parts, input
accumulation and matrix calculation. Whenever the
to
accumulate all the input. After the last input is

data are ready, input accumulation works
accumulated, matrix calculation is executed only once.
So, this effect is shown in activation column. The
parentheses of fourth and sixth column are
normalized performance to original data. When W=16
is used gate count increased 9.2 times. However, the
speed is 8 times faster and 51% of energy is enough
in comparison to the original case. When W=32, 10.2
times more hardware, but 16 times faster and only
31% of energy is enough to complete the task. The
actual hardware for this task is so small comparing

to other hardware, such as turbo decoder, this

0| Y3 EHE I=E 98 X £33 €1z

(146)

Of

u® u
W/}/ W/}/
v b 4
» D D
3 P
E// E//
y
[shitts | | FFs | | FFs | [shifs |
;ﬂ L.
EV EV
i - Input Accumulator
M atrix calec ulation
Barre! Barrel
g i S hift
| (V-1 PoE S:‘L'f' ll
I i

State

a7 2. =7 Aej AT\ SlEHY TXEE
Fig. 2. Hardware Architecture for Zero State Solution.
E 1. sl=dlof EXE, XA Azt ¥ #MET 6D
®
Table 1. Hardware Complexity, Latency and Activation
Comparison Table.
. Gates
Gates(inp B .
Ut acow) (néz;ltr;x Gates | latency Activation
Original 37 2 37424N
16 bits | 148 193 378 | 1+41/8 | 37+=N+148(N/8)}+193
32 bits | 180 193 410 | 1+1/16 | 37xN+180(N/16)+193

demerit is not so critical compared to its benefit in
latency.
III. Conclusions

We proposed the low latency turbo encoder
architecture for high data rate applications. We can get
the benefit of throughput and power efficiency. We
found that the encoding time for zero state response
was 8 times faster and 16 times faster in case of 16
bits and 32 bits memory output, respectively. The low
latency encoder for high data rate duo-binary turbo
codes with tail biting trellises is considered. Encoder
hardware architecture is proposed using inherent
encoding property of duo-binary turbo codes. And we
showed that half of execution time as well as the
energy can be reduced with the proposed architecture.

20001 3% MXBEE =2X M 46 HSCHAM 2 2

I

Oet
Mo
ot

i

[1] Critian Weiss, Cristian Bettstetter, Sven Riedel

(3]

and Daniel]J. Costello, “Turbo decoding with
tail-biting trellises,” 1998. ISSSE 98. 1998 URSI
International Symposium on Signals, Systems,
and Electronics, pp. 343-348 Oct. 1998.

Christian Weifi, Christian Bettstetter, “Code
Construction and Decoding of Parallel
Concatenated,” IEEE Transactions on Information
Theory, pp 366-386, Jan. 2001.

I[EEE P802.16e/D3-2004 Draft Amendment to
IEEE Standard for Local and mefropolitan area
networks Part 16! Air Interface and Fixed and
Mobile Broadband Wireless Access Systems.

AAFe T} WAL £,
PR L B, ABAY, B Eo B>

(147)

X XA

51

i
.

%R PP)

1996

1998

2003

9 4 o ot

ARTgS A E4,

A5 98714

AR A 59,

et &9

AR gt AL 9
DAl WA SR AAD>

