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Abstract 
 

We examine the performance of genetic algorithms using binary encoding, with respect to a 
change of basis. Changing the basis can result in a change in the linkage structure inherent in 
the fitness function. We test three simple functions with differing linkage strengths and 
analyze the results. Based on an empirical analysis, we show that a better basis results in a 
smoother fitness landscape, hence genetic algorithms based on the new encoding method 
provide better performance. 
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1. Introduction 

Traditional approaches dealing with binary encoding generally use the inherent standard 
basis. When we consider a basis other than the standard one, the linkage structure between 
basis elements and the ruggedness of the problem space can be completely different from the 
original ones. Via a change of basis, a complex problem can be transformed into a simple one, 
and vice versa. In this paper, we provide an idea for changing the basis in binary encoding. We 
also investigate and analyze its effect on genetic algorithms. 

The paper is organized as follows. In Section 2 we explain the method of changing the basis 
in the vector space 2 ({0,1} , )n n= ⊕Z .1 We introduce previous work related to the concept of 
changing the basis in Section 3. In Section 4 we introduce test functions with different linkage 
structures, and new bases for the functions, and in Section 5 we analyze the experimental 
results. We provide discussion including future work in Section 6. 

2. Change of Basis 

2.1 Binary Matrix 

A matrix A  is defined as binary if 2( )n n×∈A ZM . Binary matrices have been widely used to 
deal with the adjacency of a graph [1][2][3]. In particular, Anderson and Feil [1] transformed 
the light bulb puzzle into the problem of solving a linear system =Ax b from its graph 
structure, where 2( )n n×∈A ZM  and 2, n∈x b Z . Then, the solution is obtained by computing 

the inverse of A , i.e., 1−=x A b . Binary matrices are also useful in dealing with the cut/cycle 
subspace of a graph, which is a vector space over 2Z  [2]. They can also be used to represent a 
change of basis of a vector space over 2Z  in combinatorial problems. In this paper, we present 
this new application of binary matrices. 

2.2 Change of Basis in 2
nZ  

A basis for a vector space of dimension n  is a sequence of n  vectors, where every vector in 
the space can be uniquely expressed as a linear combination of basis vectors. Since it is often 
desirable to utilize more than one basis for a vector space, it is important to understand the 
means of easily transforming coordinate-wise representations of vectors and linear 
transformations, with respect to one basis, to their equivalent representations, with respect to 
another basis. Such a transformation is called a change of basis. The following theorem is 
easily derived from the basic theory of linear algebra [7].  
 
Theorem 1. Let 1B  and 2B  be two bases for 2

nZ . Then there exists a nonsingular matrix 

2( )n n×∈T ZM  such that for every 2
n∈v Z , ( ) ( )=T v v

1 2B B , where ( )v B  is the representation 
of v  with respect to the basis B . 
 
                                                           
1 ⊕  is the exclusive-or (XOR) operator. 

1 2 1 2 1 1 2 2
( , , ..., ) ( , , ..., ) ( , , ..., )

n n n n
a a a b b b a b a b a b⊕ = ⊕ ⊕ ⊕  
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The matrix T  in Theorem 1 is called coordinate-change matrix from the basis 1B  to 2B . 
The standard basis sB  for 2

nZ  is 1 2{ , ,..., }ne e e , where (0,...,0,1,0,...,0)je =  is the element of 

2
nZ  with 1 only in the j -th place and 0s in all other positions. Given a nonsingular matrix 

2( )n n×∈T ZM , the matrix T  can be regarded as a coordinate-change matrix from the standard 
basis to another basis TB  related to T . For every 2

n∈v Z , ( ) ( )
S
=

T
T v vB B  and then 

1 2{ , , , }ne e e=T T T TKB . Hence, the problem of finding a new basis is equivalent to that of 
finding a proper nonsingular binary matrix. 

3. Prior Work 
In this section, we provide a brief literature survey on the basis change in real-coded genetic 
algorithms as well as binary-coded ones. 

Chryssomalakos and Stephens [5] theoretically dealt with the bases of function space on 2
nZ . 

However, in this paper, we investigate the bases of more a fundamental space, i.e., those of the 
vector space 2

nZ . 
Gene reordering [4][8][10] can be considered as a special case of a change of basis. If T  is 

just a permutation matrix, a change of basis means a reordering of gene positions in encoding. 
The concept of changing the basis is much more general than that of gene reordering. 
Coordinate changes based on eigenspace and orthogonalization have been studied [12][13]. 
But, they focused on real-code representation. These results are not applicable to problems 
using binary encoding, because of the following proposition. 
 
Proposition 1. Let T  be a nonsingular binary matrix. Then, if T  is not the identity matrix I , 
the eigenspace of T does not span 2

nZ . 
 
Proof. The spectrum of T  is a subset of 2Z . Since T  is nonsingular, zero cannot be an 
eigenvalue of T . If T  has an eigenvalue, it must be one. Suppose that the eigenspace of T  
spans 2

nZ . Then there exist linearly-independent n  eigenvectors with eigenvalues of one.  Let  
A  be the matrix in columns of which has such n  eigenvectors. Then =TA A . Since A  is 
nonsingular, =T I . This is a contradiction. 

To the best of the author's knowledge, the only non-trivial change of basis in a vector space 
over 2Z  is from [2][6]. In cut space, which is a subspace of 2

nZ , there are other bases 
corresponding to spanning trees of the given connected graph, besides the standard basis. 

4. Test Functions 

We tested n -dimensional functions of binary variables. These functions are simplified 
adaptations of Kauffman's NK landscapes [9]. Kauffman defined a function with n  bits, in 
which each bit's fitness contribution depends on its k  neighbors. NK landscapes thus have 
“tunable ruggedness” and are often used to test genetic algorithms. We defined three functions, 
where 1, 2, 2k n= − , respectively. Each variable's fitness contribution depends on its next k  
variables. Three test functions are provided in the following. 
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where each 2ix ∈Z . 
Suppose that T  is a nonsingular binary matrix. Let 1 2( )T

nx x x=x L  be ( )
S

v B and 

1 2( )T
ny y y=y L  be ( )

T
v B , where 2

n∈v Z . Then Tx = y . Hence, 1
2 2F ( ) F ( )−=x T y , 

1
3 3F ( ) F ( )−=x T y , and 1

1 1F ( ) F ( )n n
−

− −=x T y . 
For the function 2F , we select the coordinate-change matrix ,( )i jt=T   such that 

, , 1 1i i i it t += =  and , 0i jt =  in all other positions. For the function 3F , we select the matrix 

,( )i jt=T  such that , , 1 , 2 1i i i i i it t t+ += = =  and , 0i jt =  in all other positions. We can easily check 
that these two T s are nonsingular for all n . For the function 1Fn− , we select the matrix 

,( )i jt=T  such that , 0i it =  and , 1i jt = in all other positions. Then T  is nonsingular when n  is 

even, because 2 2( ) 2= − = − ⋅ + =T 1 I O 1 I I  where 1   is an n n×  binary matrix in which all 
elements are 1 and O  is an n n×  binary matrix in which all elements are 0. Given a 
coordinate-change matrix T , its inverse 1−T  can be efficiently computed by the Gaussian 
elimination method. Hence we can express the functions 2F , 3F , and 1Fn−  on the new basis 

TB  as follows: 
1 1

1
2

11
( )

n n

i i
ii

y y
− −

−

==

= +∑ ⊕F T y , 

1 2

2
1

3
1

( )
n

i i i
i S i Si

y y y
−

−

∈ ∈=

= + +∑ ⊕ ⊕F T y , and 

1
1

1

( )
n

n i
i

y−
−

=

= ∑F T y , 

where each 2iy ∈Z  and kS s are proper subsets of {1, 2, , }nK . 
Here, we examine the test functions before and after changing the basis. For convenience, 

we set the number of binary variables n  to 6. Fig. 1, 2, and 3 show the linkage structures 
among terms of the functions 2F , 3F , and 1Fn− , respectively. They also show 
coordinate-change matrices ( T  and its inverse 1−T ). Here, each node denotes one term in the 
corresponding function. Each edge between two nodes denotes that the values of the two terms 
corresponding to the two nodes are dependent on their common variables. If the resultant 
graph has a complex topology, the corresponding function seems to be difficult to solve. 
Conversely, a simple sparse topology suggests that it is an easy problem. It is clear that the 
topologies obtained after changing the basis are simpler than those obtained beforehand. In 
particular, in the case of 1Fn− , a completely-linked topology can be changed into a completely 
discrete one, just by changing the basis. In the next section, we show that such a change of 
topology intuitively affects the performance of a genetic algorithm. 
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(a) 2F ( )x                  (b) 1

2F ( )−T y  

 
(c) T              (d) 1−T  

Fig. 1. Linkage among terms of 2F  ( 6n = ) 

 
(a) 3F ( )x          (b) 1

3F ( )−T y  

 
(c) T       (d) 1−T  

Fig. 2. Linkage among terms of 3F  ( 6n = ) 
(Thick edges indicate stronger linkage than thin ones) 

 

 
(a) 1F ( )n− x          (b) 1

1F ( )n
−

− T y  

 
(c) T            (d) 1−T  

Fig. 3. Linkage among terms of 1Fn−  ( 6n = ) 
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4. Empirical Results 
First, we investigated the ruggedness of test functions. When we mutated one bit in the 
encoding using the standard basis, more than one bit could be changed in the encoding of the 
new basis TB . Thus, the neighborhood structure could differ greatly depending on the 
selected basis. For six test cases with 40 variables, i.e., 40n = , we examined the function 
values with respect to mutations of k  arbitrary bits from a randomly generated solution, 
where 1, 2, 3, 4k = . Table 1 shows the results, and Fig. 4 depicts their average values. The 
figures were obtained from 10,000 trials. After changing the basis, we were able to ensure that 
all the test functions were smoother, i.e., the fitness landscape of 1

#F ( )−T y  is smoother than 
that of #F ( )x . In particular, it is clear that the new basis of 1Fn−  completely removes 
deceptiveness inherent in the function using the standard basis. 
 

Table 1. Variation of Function Value 
Test function Perturbation strength Maximum Average Standard deviation 

1 bit 2 1.0 1.0 
2 bits 4 1.5 1.3 
3 bits 6 1.8 1.6 

2 ( )F x  

4 bits 8 2.1 1.7 
1 bit 2 1.0 1.0 
2 bits 2 1.0 1.0 
3 bits 4 1.5 1.3 

1
2 ( )−F T y  

4 bits 4 1.5 1.3 
1 bit 3 1.5 0.9 
2 bits 6 1.9 1.6 
3 bits 9 2.3 1.6 

3 ( )F x  

4 bits 12 2.4 2.0 
1 bit 3 1.2 1.0 
2 bits 4 1.3 1.0 
3 bits 5 1.5 1.2 

1
3 ( )−F T y  

4 bits 6 1.7 1.3 
1 bits 25 5.0 3.7 
2 bits 2 1.0 1.0 
3 bits 25 4.9 3.6 

1( )n−F x  

4 bits 4 1.5 1.3 
1 bit 1 1.0 0.0 
2 bits 2 1.0 1.0 
3 bits 3 1.5 0.9 

1
1( )n

−
−F T y  

4 bits 4 1.5 1.3 
* Results from 10,000 trials. 

 
For the tests, we used the genetic algorithm of [11] with typical parameters. The genetic 

algorithm maximizes the test functions provided in Section 4. All genetic parameters except 
for the evaluation function are the same, and these are provided in Table 2. 
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(a) 2F  

 
(b) 3F  

 
(c) 1Fn−  

Fig. 4. Variation of function value 
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Table 3 shows the results for the same genetic framework. The optimal value of each test 
function is 40. The table figures were obtained from 100 trials. In every case, after changing 
the standard basis into another good one, the performance was significantly improved. In 
particular, the test on the function 1Fn−  shows that the new basis is much better than the 
standard basis. This is a natural result of the fact that the new basis completely removes the 
strong linkage structure inherent in the function represented by the standard basis. Also, it is 
clear that the performance of each function is proportional to the smoothness provided in 
Table 1. 
 

Table 2. Input Size and Genetic Parameters 
 Type  Value 

 Number of variables ( n )  40 
 Population size  50 

 Selection  Tournament selection with size 2 
 Crossover rate 
 Crossover type 

 1.0 
 One-point crossover 

 Mutation rate 
 Mutation type 

 0.05 
 Gene-wise mutation 

 Replacement proportion  0.5 
 Maximum number of generations  500 

 
Table 3. Results ( 40n = ) 

Test function Best Average 
(Average %-gap)

Std 
(Std %-gap) CPU † Optimal value 

2 ( )F x  40 37.08 (7.30) 1.43 (3.58) 0.55 40 
1

2 ( )−F T y  40 39.08 (2.30) 1.12 (2.79) 0.54 40 

3 ( )F x  39 36.68 (8.30) 1.45 (3.62) 0.55 40 
1

3 ( )−F T y  40 38.60 (3.50) 1.04 (2.61) 0.55 40 

1( )n−F x  37 31.45 (21.38) 2.19 (5.49) 0.89 40 
1

1( )n
−

−F T y  40 39.54 (1.15) 0.61 (1.53) 0.53 40 
* Results from 100 trials. 
The value of %-gap is computed as follows: 100 × (optimum− output)/optimum. 
†Average CPU seconds on Intel® Xeon™ CPU 2.40GHz. 

5. Discussion 
In this paper, we provided the simple but important idea of changing the basis in binary 
representation. The paper was based on the fact that a problem encoded by a binary vector has 
multiple representations according to the selected basis. We also tested some functions, which 
demonstrated the advantages of changing the basis. To the best of the author's knowledge, this 
is the first paper establishing the importance of changing the basis in binary encoding. 
However, this paper does not provide any indications about which basis should be selected to 
ensure that the search space is smooth. More studies about the mechanism for finding a good 
basis, i.e., a good coordinate-change matrix are needed. To this end, it would be good to begin 
with an investigation of the space of nonsingular binary matrices, i.e., general linear groups 
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over 2
nZ . Some problems may be barely transformed by a change of basis. Research about 

which problems are transformed by changing the basis and the degree to which the problems 
are transformed are topics for future study. In the future, this approach can be extended into the 
case of k -ary encodings. 
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