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ABSTRACT⎯Fast binary dilation and erosion algorithms 
using run-length encoding (RLE) are proposed. RLE is an 
alternative way of representing a binary image using a run, 
which is a sequence of ‘1’ pixels. First, we derive the run-based 
representation of dilation and erosion and then present the full 
steps of the proposed algorithms in detail. 

Keywords⎯Binary image processing, morphological 
operator, run-length encoding. 

I. Introduction 
Morphological operators are some of the most fundamental 

and popular nonlinear tools for various binary image 
processing. Morphological operators are constructed by 
combining two basic operators: dilation and erosion. Assuming 
that Z is a region in binary image I, the dilation and erosion of Z 
by structuring element S are defined as  

Dilation: { }0ˆ ≠=⊕ ZSpSZ p ∩            (1) 

Erosion: { }ZSpSZ p ⊆=Θ ,           (2) 

where Ŝ is the reflection about the origin and Sp is the 
translation by position p. All other morphological operators are 
defined by concatenating the two operators. For example, the 
opening operator is defined by dilation after erosion, and the 
closing operator is defined by erosion after dilation.  

In this paper, fast binary dilation and erosion algorithms 
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using run-length encoding (RLE) [1] are proposed. A run is a 
sequence of ‘1’ (or ‘0’) pixels horizontally (or vertically), and 
RLE is a representation of a binary image using a combination 
of runs. Handling binary images in runs, rather than in pixels, 
can bring a considerable reduction in computation because the 
number of runs is usually much smaller than the number of 
pixels. Previously, several ideas for run-based morphological 
operations were presented in [2]-[4]. Piper and Tang [2] 
introduced the concept of using RLE for binary morphological 
operations, and Cardoner and Thomas [3], [4] applied the 
concept for skeletoning and line drawing. However, a detailed 
theoretical background and an effective algorithm with full 
numerical analysis have yet to be presented.  

In section II, we provide a mathematical investigation on 
dilation and erosion in terms of runs, and in section III, fast 
algorithms for dilation and erosion are proposed based on the 
investigation. The proposed algorithms have inputs and outputs 
as run-length encoded forms. In section IV, simulation results 
are presented, and we conclude in section V.  

II. Dilation and Erosion Using RLE  

For the sake of simplicity, a run is considered as a sequence 
of ‘1’ pixels in the horizontal direction throughout this paper. 
Assume that binary image I has region Z of ‘1’ pixels, and the 
RLE representation of Z is defined as n

N
n RZ 1== ∪ , where N is 

the number of runs, and  Rn= <xLn, xRn, yn> is the n-th run of 
Z. The xLn, xRn, and yn of Rn respectively indicate the x-
coordinate of the left-most (starting) pixel, the x-coordinate of 
the right-most (ending) pixel, and the y-coordinate of Rn. 

Regarding RLE, we define a ‘compact representation of 
RLE’ when concatenated ‘1’ pixels are defined as a single run, 
not divided into several runs with or without overlapping. 
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Unless a compact run-length encoding is made, unnecessary 
computation is required due to redundancy among the runs. 

1. Dilation Using RLE 

Here, a run-based expression of dilation is presented. Let 
Z
n

N
n RZ 1== ∪ and S

m
M
m RS 1== ∪ be the compact RLE 

representation of Z and S, respectively. The intersection of Ŝp 

and Z is expressed as 
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Applying (3) into the dilation definition (1), we have 
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Therefore, the dilation of Z by S is the same as the union of the 
dilation of each run of Z by each run of S.  

Regarding dilation S
m

Z
n RR ⊕ , it is the same as finding all 

possible positions where Z
nR  and p

S
mR )ˆ(  overlap. Two runs 

can have an overlapping relation when they are located at the 
same y position and share more than one pixel. For a given 
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translated reflection of SmR can be represented as 
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Hence, the two runs Z
nR  and p
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Modifying (5), we obtain  
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Therefore, the dilation of Z by S is expressed as 
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2. Erosion Using RLE 

Now, a run-based representation of erosion is presented. 
From the definition of erosion (2), we have 
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Meanwhile, the erosion of Z by a single run R is defined as 
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Combining (7) and (8), erosion of Z by S is expressed as 
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Next, let’s consider the erosion of single runs: S
m

Z
n RR Θ . 

From (2), the erosion operation is identifying all possible 
positions p where ( )p

S
mR  is included in Z

nR . Run R1 includes 
R2 in the following situations: (i) when the length of R1 is equal 
to or longer than R2; (ii) when they are at the same y position; 
and (iii) when the left- and right-most pixels of R2 are within R1. 
Hence, Z

nR  includes ( )p
S
nR  when the following are true. 
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Therefore, modifying (10) and applying it into (9), we finally 
obtain 
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III. Proposed Algorithms  

In this section, the proposed dilation and erosion algorithms 
are presented. Before presenting the algorithms, we define 
primary runs as the runs generated from (6) or (11). The 
outcomes from (6) and (11) are the results for dilation or 
erosion. However, it is not guaranteed that primary runs are 
compactly represented. To have further operation with the 
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primary runs, an additional process for removing redundancy, 
that is, a compacting process, among primary runs is required 
to eliminate unnecessary computations.  

The proposed dilation algorithm is as follows: 

Input: compactly run-length encoded Z and S; 
Output: compact representation of ;SZ ⊕  
Procedure: 
Step 1. Using runs of Z and S, find N × M primary runs by (6). 
Step 2. Sort the primary runs by the value of a y-coordinate, 

and identify the runs that have the same y-coordinate.  
Step 3. If more than two runs exist at a certain y-coordinate, 

go to step 4. Otherwise, terminate the process. 
Step 4. Repeat the following two operations until no 

overlapping or inclusion of primary runs exists: 
① If any two runs overlap as similarly to (5), combine 

them into one. 
② If any a primary run is included in another primary run 

as similarly to (10), delete the included run.  

The flow of the dilation algorithm is straightforward: Obtain 
primary runs using (6) and then eliminate redundancy among 
them.  

Next, the proposed erosion algorithm is presented. The 
erosion algorithm needs more consideration than the dilation 
algorithm due to the finding of intersections of primary runs.  

Input: compactly run-length encoded Z and S; 
Output: compact representation of ;SZΘ  
Procedure: 
Step 1. Using runs of Z and S, find a primary run using (11). 

For each primary run, store an index that indicates the m 
of SmM

m RS 1== ∪ . The index is additional information that 
helps to identify which run of S is used for obtaining a 
primary run. 

Step 2. Sort the primary runs by the values of a y-coordinate, 
and identify the runs that have the same y-coordinate. 

Step 3. Eliminate all primary runs at a certain y-coordinate, if:   
① The number of primary runs at a certain y-coordinate is 

less than M, or  
② The number is more than or equal to M, but a certain 

index value m among [1,…, M] is missing. 
Step 4. Find the common regions of all the runs that survived 

from step 3.  

In the case of erosion, primary runs are obtained in step 1, and 
the intersection of primary runs is calculated in step 4 after 
eliminating unnecessary primary runs in step 3. 

Let’s consider the computational complexity of the proposed 
algorithms. Assuming z and s are the number of pixels in Z and 
S, respectively, the computational complexity of pixel-unit 

dilation and erosion are proportional to )( szO × 1). Compared 
to this, the proposed dilation and erosion algorithms require 

))(( MNsortingMNO ×+×  operations. Generally, the 
computational complexity for fast sorting of N numbers is 
proportional to )log())(( NNNsortingO = . Hence, the 
computational complexity of the proposed algorithms can be 
modified as ( ) ( )( ))log(1 MNMNO ×+⋅× . Because sz ×  
is always bigger than MN ×  without losing generality, we 
can conclude that ( ) ( )( ))log(1)( MNMNOszO ×+⋅×>× is 
always satisfied.  

IV. Simulations  

In this section, we show how much computational reduction 
can be obtained from the proposed algorithms. To show their 
performance, we compared the execution times between the 
proposed algorithms and their pixel-unit processing under the 
same machine. This comparison may not be able to show 
quantitative evidence, but at least, it can provide the strengths 
of the proposed algorithms from a qualitative perspective. A 
pixel-unit processing is implemented as two dimensional 
filtering, that is, a structuring element is regarded as a filter 
window and is scanned throughout all possible pixels. Figure 1 
shows the test image and structuring element used for our 
simulations. The image is composed of 380 runs and its size is 
256 × 256 pixels.  
 

 

Fig. 1. Test image and structuring element. 
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Figure 2 shows a comparison of computation times for 
dilation, erosion, opening, and closing. The vertical axis 
represents the elapsed time after 1000 repetitions, and the ratio 
of the execution time is shown at the bottom. Pixel-unit erosion 
takes less time than pixel-unit dilation because scanning is 
restricted to the input regions.  

The results show that the proposed algorithms require only 
less than 9% of computation time for pixel-unit processing.  
                                                               

1) O(  ) = Order of (  ) 
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Fig. 2. The computation times for 1000 repetitions of each 
operation using a PC with a 1.59 GHz CPU and 1 Gbyte 
RAM. 
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V. Conclusions 

In this paper, fast RLE-based dilation and erosion algorithms 
are presented. The proposed algorithms are developed based on 
the run-based expressions of dilation and erosion as described 
in section II. In addition to the fast computing performance of 
the proposed algorithms, we believe that the run-based 
investigation on morphological operators can also be used in 
various image processing applications [5] and as instructive 
information for the further development of relevant 
technologies.  
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