• Title/Summary/Keyword: binary codes

Search Result 208, Processing Time 0.024 seconds

Program Slicing for Binary code Deobfuscation (역난독화를 위한 바이너리 프로그램 슬라이싱)

  • Mok, Seong-Kyun;Jeon, Hyeon-gu;Cho, Eun-Sun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • Hackers have obfuscated their malware to avoid being analyzed. Recently, obfuscation tools translate original codes into bytecodes to use virtualized-obfuscation, so that bytecodes are executed by virtual machines. In such cases, malware analysts fail to know about the malware before execution of the codes. We found that program slicing is one of promising program analysis techniques to solve this problem. The main concepts of program slice include slicing criteria given by analysts and sliced statements according to the slicing criteria. This paper proposes a deobfuscation method based on program slicing technique.

Adaptive-learning Code Allocation Technique for Improving Dimming Level and Reducing Flicker in Visible Light Communication (가시광통신에서 Dimming Level 향상 및 Flicker 감소를 위한 적응-학습 코드할당 기법)

  • Lee, Kyu-Jin;Han, Doo-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.30-36
    • /
    • 2022
  • In this paper, when the lighting and communication functions of the visible light communication system are used at the same time, we propose a technique to reduce the dimming level and flicker of the lighting. Visible light communication must satisfy both communication and lighting performance. However, the existing data code method results in reducing the brightness of the entire lighting. This causes deterioration of lighting performance and flicker phenomenon. To solve this problem, in this paper, we propose an adaptive learning code allocation technique that allocates binary codes to transmitted characters and optimizes and matches the binary codes allocated according to the frequency of occurrence of alphabets in character strings. Through this, we studied a technique that can faithfully play the role of lighting as well as communication function by allocating codes so that the 'OFF' pattern does not occur continuously while maintaining the maximum dimming level of each character string. As a result of the performance evaluation, the frequency of occurrence of '1' increased significantly without significantly affecting the overall communication performance, and on the contrary, the frequency of consecutive '0' decreased, indicating that the lighting performance of the system was greatly improved.

Detection of Fingerprint Ridge Direction Based on the Run-Length and Chain Codes (런길이 및 체인코드를 이용한 지문 융선의 방향 검출)

  • Lee Jeong-Hwan;Park Se-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1740-1747
    • /
    • 2004
  • In this paper, we proposed an effective method for detecting fingerprint ridge direction based on the run-length and chain codes. First, a fingerprint image is normalized, and it is thresholded to obtain binary image with foreground and background regions. The foreground regions is composed of fingerprint ridges, and the ridges is encoded with the run-length and chain codes. To detect directional information, the boundary of ridge codes is traced, and curvature is calculated at ecah point of boundary. And the detected direction value is smoothed with appropriate window locally. The proposed method is applied to NIST and FVC2002 fingerprint database to evaluate performance. By the experimental results, the proposed method can be used to obtain ridge direction value in fingerprint image.

Build-in Wiretap Channel I with Feedback and LDPC Codes

  • Wen, Hong;Gong, Guang;Ho, Pin-Han
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.538-543
    • /
    • 2009
  • A wiretap channel I is one of the channel models that was proved to achieve unconditional security. However, it has been an open problem in realizing such a channel model in a practical network environment. The paper is committed to solve the open problem by introducing a novel approach for building wiretap channel I in which the eavesdropper sees a binary symmetric channel (BSC) with error probability p while themain channel is error free. By taking advantage of the feedback and low density parity check (LDPC) codes, our scheme adds randomness to the feedback signals from the destination for keeping an eavesdropper ignorant; on the other hand, redundancy is added and encoded by the LDPC codes such that a legitimate receiver can correctly receive and decode the signals. With the proposed approach, unconditionallysecure communication can be achieved through interactive communications, in which the legitimate partner can realize the secret information transmission without a pre-shared secret key even if the eavesdropper has better channel from the beginning.

A Study on the Design of Optimum Sidelobe Suppression Filter for Barker Codes (바커 코드에 대한 최적 부엽 억제 필터의 설계에 관한 연구)

  • 정경태
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.151-156
    • /
    • 1991
  • In this paper, we propose a new algorithm for designing the R-G filter that has optimum performance in terms of mean square sidelobe level(MSSL) for the Barker code. The advantage of the conventional R-G filter lies in its simple structure so that it can be easily implemented. However, the conventional R-G filter dose not have optimum performances in terms of peak sidelobe level(PSL), mean sidelobe level(MSL), and MSSL. Recently, a(R-G)LP filter of which filter coefficients are obtained by the linear programming algorithm was proposed and known to have optimum performance in PSL. The proposed (R-G)LS filter keeps the simple structure of the conventional R-G filter and has the filter coefficients that minimizes the sidelobe in the least square sense. The analytic results show that the proposed (R-G)LS filter has better performances than the conventional R-G filter in terms of PSL, MSL, and MSSL. Compared with (R-G)LP filter, the proposed (R-G)LS filter has better performances in terms of MSL and MSSL. The proposed filter design algorithm can be applied to the other binary codes such as truncated pseudonoise(PN) codes and concatenated codes.

  • PDF

Receiver Design for Satellite Navigation Signals using the Tiered Differential Polyphase Code

  • Jo, Gwang Hee;Noh, Jae Hee;Lim, Deok Won;Son, Seok Bo;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.307-313
    • /
    • 2021
  • Modernized GNSS signal structures tend to use tiered codes, and all GNSSs use binary codes as secondary codes. However, recently, signals using polyphase codes such as Zadoff-Chu sequence have been proposed, and are expected to be utilized in GNSS. For example, there is Tiered Differential Polyphase Code (TDPC) using polyphase code as secondary code. In TDPC, the phase of secondary code changes every one period of the primary code and a time-variant error is added to the carrier tracking error, so carrier tracking ambiguity exists until the secondary code phase is found. Since the carrier tracking ambiguity cannot be solved using the general GNSS receiver architecture, a new receiver architecture is required. Therefore, in this paper, we describe the carrier tracking ambiguity and its cause in signal tracking, and propose a receiver structure that can solve it. In order to prove the proposed receiver structure, we provide three signal tracking results. The first is the differential decoding result (secondary code sync) using the general GNSS receiver structure and the proposed receiver structure. The second is the IQ diagram before and after multiplying the secondary code demodulation when carrier tracking ambiguity is solved using the proposed receiver structure. The third is the carrier tracking result of the legacy GPS (L1 C/A) signal and the signal using TDPC.

Analysis of Turbo Coding and Decoding Algorithm for DVB-RCS Next Generation (DVB-RCS Next Generation을 위한 터보 부복호화 방식 분석)

  • Kim, Min-Hyuk;Park, Tae-Doo;Lim, Byeong-Su;Lee, In-Ki;Oh, Deock-Gil;Jung, Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9C
    • /
    • pp.537-545
    • /
    • 2011
  • This paper analyzed performance of three dimensional turbo code and turbo ${\Phi}$ codes proposed in the next generation DVB-RCS systems. In the view of turbo ${\Phi}$ codes, we proposed the optimal permutation and puncturing patterns for triple binary input data. We also proposed optimal post-encoder types and interleaving algorithm for three dimensional turbo codes. Based on optimal parameters, we simulated both turbo codes, and we confirmed that the performance of turbo ${\Phi}$ codes are better than that of three dimensional turbo codes. However, the complexity of turbo ${\Phi}$ is more complex than that of three dimensional turbo codes by 18%.

Reversible Data Hiding based on QR Code for Binary Image (이진 이미지를 위한 QR 코드 기반의 가역적인 데이터 은닉)

  • Kim, Cheonshik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.281-288
    • /
    • 2014
  • QR code (abbreviated from Quick Response Code) is code system that is strong in against to apply image processing techniques (skew, warp, blur, and rotate) as QR codes can store several hundred times the amount of information carried by ordinary bar codes. For this reason, QR code is used in various fields, e.g., air ticket (boarding control system), food(vegetables, meat etc.) tracking system, contact lenses management, prescription management, patient wrist band (patient management) etc. In this paper, we proposed reversible data hiding for binary images. A reversible data hiding algorithm, which can recover the original image without any distortion from the marked (stego) image after the hidden data have been extracted, because it is possible to use various kinds of purposes. QR code can be used to generate by anyone so it can be easily used for crime. In order to prevent crimes related QR code, reversible data hiding can confirm if QR code is counterfeit or not as including authentication information. In this paper, we proved proposed method as experiments.

Improving The Performance of Turbo Code by Optimizing QAM Constellation (QAM 변조방식의 성상도 최적화를 통한 이진 터보 부호의 성능 개선)

  • Lee, Keun-Hyung;Lee, Ji-Yeon;Kang, Dong-Hoon;Oh, Wang-Rok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.39-44
    • /
    • 2009
  • It is well-known that the performance of turbo codes can be improved by allocating different energies per code symbol. In this paper, based on this observation, we propose a joint encoding and modulation scheme for quadrature amplitude modulated turbo code systems. In the proposed scheme, the amount of energy difference between the turbo coded symbols is optimized by optimizing the constellation of quadrature amplitude modulation (QAM). The proposed scheme offers better coding gain compared to the conventional combination of binary turbo code and QAM at the bit error rate of 10$^{-5}$. Also, the performance of binary turbo codes with the proposed QAM constellation for various code symbol mapping strategies are verified.

Fully-Parallel Architecture for 1.4 Gbps Non-Binary LDPC Codes Decoder (1.4 Gbps 비이진 LDPC 코드 복호기를 위한 Fully-Parallel 아키텍처)

  • Choi, Injun;Kim, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.48-58
    • /
    • 2016
  • This paper presents the high-throughput fully-parallel architecture for GF(64) (160,80) regular (2,4) non-binary LDPC (NB-LDPC) codes decoder based on the extended min sum algorithm. We exploit the NB-LDPC code that features a very low check node and variable node degree to reduce the complexity of decoder. This paper designs the fully-parallel architecture and allows the interleaving check node and variable node to increase the throughput of the decoder. We further improve the throughput by the proposed early sorting to reduce the latency of the check node operation. The proposed decoder has the latency of 37 cycles in the one decoding iteration and achieves a high throughput of 1402Mbps at 625MHz.