• Title/Summary/Keyword: bilinear system

Search Result 197, Processing Time 0.026 seconds

A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems

  • Samimifar, Maryam;Massumi, Ali;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.289-301
    • /
    • 2019
  • Hysteretic energy is defined as energy dissipated through inelastic deformations during a ground motion by the system. It includes frequency content and duration of ground motion as two remarkable parameters, while these characteristics are not seen in displacement spectrum. Since maximum displacement individually cannot be the appropriate criterion for damage assessment, hysteretic energy has been evaluated in this research as a more comprehensive seismic demand parameter. An innovative methodology has been proposed to establish a new equivalent linear model to estimate hysteretic energy spectrum for bilinear SDOF models under two different sets of earthquake excitations. Error minimization has been defined in the space of equivalent linearization concept, which resulted in equivalent damping and equivalent period as representative parameters of the linear model. Nonlinear regression analysis was carried out for predicting these equivalent parameter as a function of ductility. The results also indicate differences between seismic demand characteristics of far-field and near-field ground motions, which are not identified by most of previous equations presented for predicting seismic energy. The main advantage of the proposed model is its independency on parameters related to earthquake and response characteristics, which has led to more efficiency as well as simplicity. The capability of providing a practical energy based seismic performance evaluation is another outstanding feature of the proposed model.

Evolution of post-peak localized strain field of steel under quasi-static uniaxial tension: Analytical study

  • Altai, Saif L.;Orton, Sarah L.;Chen, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.435-449
    • /
    • 2022
  • Constitutive modeling that could reasonably predict and effectively evaluate the post-peak structural behavior while eliminating the mesh-dependency in numerical simulation remains to be developed for general engineering applications. Based on the previous work, a simple one-dimensional modeling procedure is proposed to predict and evaluate the post-peak response, as characterized by the evolution of localized strain field, of a steel member to monotonically uniaxial tension. The proposed model extends the classic one-dimensional softening with localization model as introduced by (Schreyer and Chen 1986) to account for the localization length, and bifurcation and rupture points. The new findings of this research are as follows. Two types of strain-softening functions (bilinear and nonlinear) are proposed for comparison. The new failure criterion corresponding to the constitutive modeling is formulated based on the engineering strain inside the localization zone at rupture. Furthermore, a new mathematical expression is developed, based on the strain rate inside and outside the localization zone, to describe the displacement field at which bifurcation occurs. The model solutions are compared with the experimental data on four low-carbon cylindrical steel bars of different lengths. For engineering applications, the model solutions are also compared to the experimental data of a cylindrical steel bar system (three steel bars arranged in series). It is shown that the bilinear and nonlinear softening models can predict the energy dissipation in the post-peak regime with an average difference of only 4%.

Properties of positive real systems in time domain (양실 시스템의 시간영역에서의 특성)

  • Shim, Deok-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.157-162
    • /
    • 1998
  • This paper provides some properties of positive real systems in time domain. It is well-known that a positive real system and a bounded real system are closely related by bilinear transform in a frequency domain. By using supply rate and storage function, we show that a positive real system can be transformed into a bounded real system, and that a positive real system can be transformed into another positive real system with in a time domain. Also, we show that an ESPR(extended strictly positive real) system can be decomposed into a feedback system of lossless positive real system and another ESPR system. These results may be used to design an output feedback controller for mixed H$H_2$ESPR problem.

  • PDF

Vision-based Real-Time Two-dimensional Bar Code Detection System at Long Range (비전 기반 실시간 원거리 2차원 바코드 검출 시스템)

  • Yun, In Yong;Kim, Joong Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.89-95
    • /
    • 2015
  • In this paper, we propose a real-time two-dimensional bar code detection system even at long range using a vision technique. We first perform short-range detection, and then long-range detection if the short-range detection is not successful. First, edge map generation, image binarization, and connect component labeling (CCL) are performed in order to select a region of interest (ROI). After interpolating the selected ROI using bilinear interpolation, a location symbol pattern is detected as the same as for short-range detection. Finally, the symbol pattern is arranged by applying inverse perspective transformation to localize bar codes. Experimental results demonstrate that the proposed system successfully detects bar codes at two or three times longer distance than existing ones even at indoor environment.

Automatic Film Line Scratch Removal System using Spatial Information (공간 정보를 이용한 오래된 필름에서의 스크래치 제거 시스템)

  • Ko, Eun-Jeong;Kim, Kyung-Tai;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.162-169
    • /
    • 2008
  • Film restoration is to detect the location and extent of defected regions from a given movie film, and if present, to reconstruct the lost information of each regions. It has gained increasing attention by many researchers, to support multimedia service of high quality. Among artifacts, scratch is the most frequent degradation. In this paper, an automatic film line scratch removal system is developed that can detect and restore all kind of scratches. For this we use the spatial information of scratches: The scratch in old films has lower or higher brightness than neighboring pixels in its vicinity and usually appears as a vertically long thin line. Our systems consists of scratch detection and scratch restoration. The scratches of various types are detected by neural network based texture classifier and morphology-based shape filter and then the degraded regions are restored using bilinear interpolation. To assess the validity of the Proposed method, it has been tested with all kinds of scratches, and then experimental results show that the proposed approach is robust to various scratches and efficient to apply a real film removal system.

Capacity Spectrum Analysis using Equivalent SDOF Method and Equivalent Damping Method for RC Wall Structure (철근콘크리트 벽체구조물에 대한 등가단자유도 방법 및 등가 감쇠비 산정방법에 따른 역량스펙트럼해석)

  • Song, Jong-Keol;Jang, Dong-Hui;Kim, Hark-Soo;Chung, Yeong-Hwa
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.169-187
    • /
    • 2008
  • Performance-based approaches as an alternative method of the existing force-based approach have gradually become recognized tools for the seismic design and evaluation. The maximum inelastic displacement response using capacity spectrum method (CSM) with elastic response spectrum is estimated from seismic response of equivalent linear system converted from nonlinear system. The purpose of this paper is to evaluate accuracy of capacity spectrum method using the equivalent SDOF methods of 4 types and the equivalent damping methods of 5 types for RC wall structure. In order to evaluate accuracy of capacity spectrum analysis, the shaking table test results for RC wall structures are compared with those by the capacity spectrum analysis. Also, the effect of bilinear capacity curves by two bilinear approximation methods for capacity spectrum analysis is compared.

ON SOME BEHAVIOR OF INTEGRAL POINTS ON A HYPERBOLA

  • Kim, Yeonok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1243-1259
    • /
    • 2013
  • In this paper, we study the root system of rank 2 hyperbolic Kac-Moody algebras. We give some sufficient conditions for the existence of imaginary roots of square length $-2k(k{\in}\mathbb{Z}_{>0}$. We also give several relations between the integral points on the hyperbola $\mathfrak{h}$ to show that the value of the symmetric bilinear form of any two integral points depends only on the number of integral points between them. We also give some generalizations of Binet formula and Catalan's identity.

Extreme point results for robust schur stability

  • Kang, Hwan-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.467-470
    • /
    • 1994
  • In this paper, we develop two sufficient conditions for Schur stability of convex combinations of discrete time polynomials. We give conditions under which Schur stability of the extremes implies Schur stability of the entire convex combination. These results are based on Bhattacharyya's result(1991), the AHMC theory in Barmish and Kang's paper (1993) and the bilinear transformation. Important applications of the results involves robust Schur stability of a feedback system having degenerate interval plants in an extreme point context.

  • PDF

Steady State Optimal Control of Discrete Weakly Coupled Bilinear Systems

  • Kang, Hyun-Goo;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.38.6-38
    • /
    • 2001
  • This paper presents a steady state optimal control algorithm for the weakly coupled discrete time bilinearsystems. The optimal solution for the overall system is obtained by solving a sequence of reduced order algebraic Riccati equations with an arbitrary accuracy. The obtained solutions converge to the optimal solutions by using the iteration method. We verify the proposed method by applying it to a real world numerical example.

  • PDF

Stabilizing controller for singularly perturbed discrete time systems (특이섭동 쌍일차 이산시 시스템에서의 안정화 제어에 관한 연구)

  • Kim, Beom-Soo;Kim, Young-Joong;Chang, Sae-Kwon;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2155-2157
    • /
    • 2002
  • In this paper, we present a stabilizing controller for the singularly perturbed discrete time bilinear systems. The proposed control method guarantees the robust stability for the resulting closed loop system with multi-input. We verify the proposed algorithm by a numerical example.

  • PDF