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Stabilizing controller for singularly perturbed discrete time systems

Beom~Soo Kim. Young-Joong Kim., Sae-Kwon Chang. Myo-Taeg Lim
School of Electrical Engineering, Korea University

Abstract - In this paper, we present a
stabilizing controller for the singularly
perturbed discrete time bilinear systems. The
proposed control method guarantees the robust
stability for the resulting closed loop system
with multi-input. We verify the proposed
algorithm by a numerical example.

1. Introduction

Bilinear system is lincar in control and linear in state
but not jointly linear in state and control. It is
important to understand its real properties or to
guarantee the global stability or to improve the
performance by applying the various control
techniques to bilinear system rather than its linearized
system

Singular perturbation theory and control technigues

to solve the singularly perturbed systems have
received much attention by many researchers.
Recently, an excellent survey of the applications of
the theory and control methods of singular
perturbation and time scales and the importance
features of the singularly perturbed systems have
been reported in [1]. Also very efficient and high
accurate optimal control methods for both continuous
time and discrete time singularly perturbed lincar
systems are found in a recent book[2].
The stabilization problems for the bilinear systems
have been widely studied in the past by many
researchers, sce for examples[3][4]{5]. However, many
researches are devoted to the continuous time bilinear
systems. In the case of discrete time bilinear systems,
a few research are reported. Recently, an approach to
design the robust stabilizing nonlinear state feedback
controller for the singularly perturbed discrcte bilinear
systems with single input was developed in [3].

This work is to extend the results of [3] and [6] to
singularly perturbed discrete time multi-input bilinear
systems.

2. Main result

2.1 Singularly perturbed discrete bilinear
systems

We consider the singularly perturbed discrete
bilinear systems described by
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where x,€R"' is a slow state vector, xR’

is a fast state vector, w=R™ is an input
vector, € is a small positive parameter, and
A s Ny B:with 4,7=1,2are constant matrices
having appropriate dimension.

Let z7=[x7 x7land A=A+ eAwhere
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Then we can rewrite (1) as
Akt D)= Ax(B+ 22 M (k) + Bl (2)

The following Lyapunov function candidate is
sclected to derive the stabilizing control law.

W) =z7Pz (3)
where P is a unique real symmetric
positive-definite matrix satisfying the following
discrete Lyapunov equation

a+n’alpa.-pP=1, (4)
y is a positive constant satisfying
V(1+ A1 (5)

and 7(A) is a spectral radius of A.
Then the following theorem in (3] states
that one can obtain the stabilizing control law

for the singularly perturbed discrete time
single-input bilinear systems by choosing C
and «x.

Theorem 1. Consider singularly perturbed
discrete time single-input bilinear systems
2(k+1)= Az(k) + u( ) Nz(k) + Bu(k) (6)
with the singular perturbation parameter €
satisfying the inequality
1
2

e<e” (7)

— Y
( (1+7)2HA,TPA/H)
Then the following nonlinear state feedback
control law globally and asymptotically
stabilizes the equilibrium point of (6)
— xCz(k)
u(k)= =
Vi+z (BCTCxH k)
where CERY'™ can be arbitrarily designed. ¥
is obtained from (4), and x satisfies the
following Iinequality
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(8)
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where

2_2
a=1—41—+§1L||A,TPA,|| >0 (10)

The proof of Theorem 1 can be found in (3).
extend Theorem 1 to the multi-input cases usin
results of (6].

Theorem 2. Consider singularly perturbed dis
time multi-input bilinear systems (2) with a si
perturbation parameter € satisfying the inequali

: z : (11)
(e*= 11
ee ( (1+7)2|1A,TPA,||)
and arbitrarily designed CeR™". Then the

following nonlinear state feedback control law
globally and asymptotically stabilizes the
equilibrium point of (2).

— xCz(k)
k= 2 (12)
B = T C IR
where 7y is obtained through (5) and x satisfie
following inequality
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where 1<p<n is a number of nonzero N;

matrices and a satisfies

2_2
a=1——(1—+f)—E|IA;TPA,{|>0 (14)

The following Lemmas are needed to prove
the Theorem 2.
Lemma 1. Consider the matrices A, B, and C,
which have the same dimensions, and let C =
A + B. For any positive constant 7y and
positive definite symmetric matrix D, the
following relation holds:
CDCT<(1+ PADAT+(1+y H)BDBT (15)

The proof of this lemma follows from {7].
Lemma 2. Consider a vector zeR™! and mat
MEeR™™ and N, R™™ with i=1,2,-,nTh

the following relation holds:

Z}lziM,: 212,-1\/,- (16)

with unique N; as follows:

1,1 1
ny ng tt Nim
2 2 2
Ni= na n.,z im (17)
n .ﬂ n
na Na > Nim
& . .
where ny of N; is an (i,/>th element of M,

Mnd the i-th
and the other

matrix with j=1,2,--,mk=1,2,---,
row of Z&R™", i=1,-,
rows of Z; are zero row vectors.

The above lemma leads to the following result.
Corollary 1. The norms of the equation (16) ha
following relation.

I 252 M=zl 2 IV (18)
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The proof of Lemma 2 and Corollary 1 can be
found in (6).

In the following we prove the Theorem 2. By
substituting the control law defined in (12)
into (2), we can obtain the following
closed-loop systems.

2kt )= (As+eA/ -

D xC
“Vi+z(BCTCAR
)z(k)

xC
bt} V1+z (BCTCah)
(19)
Using the Lyapunov function defined in (3),
the forward Lyapunov function can be written
by substituting (19) and (2) into (3)
V(z(k+1)) =z T(k) n TPpz(k) (20)
where

_ 1
11z BCICAR) 2D

7= A+ €A j— xBC— x{zM}C (22)
Using Lemma 1, the Lyapunov forward differenc
given by
AV= z (B (A +eA ;— xBC— x{zM}C) T
P(A (+ €A j— txBC— tx{zM} C)z(k)
—z Tk P2(k)
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~P+(1+7 Hr (1_(1+7)CTBTPBC
+(1+ 7 HC N zM) TP{zM)}C))z( k)
(24)

where {zM}= ZIZ,M,- Using Lemma 1, 2 the
term CT{zM} TP{zM}C of (24) can be rewritten

" c’( g\zi(k)M,) TP( gzi(k)Mi)c
| z"Zi(k?N[) TP( SZARNIC (g5
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A

Thus the inequality (24) becomes
avs 27k ((1 +NA ZPAS+_(1__J:‘J;£A/‘TPAI
—p+ 0 2cTpTppe
(1+7)2x (E‘ (1+7) CINTZTPZ N C
+41—+Z)— C'NIzZ TPZ,,N c))z(k)

Since 0<rSl‘ the above inequality can be
rewritten by using Corollary 1.

2.2
av< zT(k)(—I,,+—LZ)——1+7 £ 1aTPA
2.2
+- 407X o TpTppey
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(26)
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Since the following relation is always satisfic
any 2 and C

e Tz T it L C
r iz Tinchion =8 28
we can rewrite (26) as follows:

avs 2T~ 1+ 1D 14 Tpg
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(29)

< zT(k)(—aI,,+(n+1) x max(il—“;ZLZ cTBTPBCI,
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Thus the rlght hand side of (29) is negative if
and only if

2
J—I%ZL ic 7B TPBC,
3
—Qf—f)— RAEDE (30)
¥Z)— N, nznpn)

|
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Since N; matrix obtamed by Lemma 2 may be
zero matrix, zero N; matrices must be

excluded in choosing the control law to prevent
the denomlnatox of any clement included in the
parenthesis of (30) from being zero.

2.2 A numerical example

The proposed control method is applied to
discrete time multi-input bilinear systems
described by

2(k+1)= Az(B) + glz,«M,-u(k)+Bu(k)

where

A=[:0%85 00%23]’ B= [0651 0. 325]

0
M1=[_6%2 (1)] MZ“[I 0203]’ C:[(l) (1)
e=0.01

with the initial condition x(0)=1[1.0 1.517The
simulation results are presented in Figure 1, 2
that show the trajectories of the statec and
input, respectively. Thesec figures show that all
states asymptotically converge to the
equilibrium point.
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Fig. 1 State trajectories
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Fig. 2 Input trajectories

3. Conclusion

In this paper we have presented a robust
stabilizing controller for singularly perturbed
multi input discrete time bilinear systems by
using the Lyapunov method. The resulting
control method globally and robustly stabilizes

the discrete time multi-input  singularly
perturbed bilinear systems.
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