• Title/Summary/Keyword: bilayer films

Search Result 104, Processing Time 0.038 seconds

Development of Plastic/Gelatin Bilayer Active Packaging Film with Antibacterial and Water-Absorbing Functions for Lamb Preservation

  • Shijing Wang;Weili Rao;Chengli Hou;Raheel Suleman;Zhisheng Zhang;Xiaoyu Chai;Hanxue Tian
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1128-1149
    • /
    • 2023
  • In order to extend the shelf life of refrigerating raw lamb by inhibiting the growth of microorganisms, preventing the oxidation of fat and protein, and absorbing the juice outflow of lamb during storage, an active packaging system based on plastic/gelatin bilayer film with essential oil was developed in this study. Three kinds of petroleum-derived plastic films, oriented polypropylene (OPP), polyethylene terephthalate, and polyethylene, were coated with gelatin to make bilayer films for lamb preservation. The results showed significant improvement in the mechanical properties, oxygen, moisture, and light barriers of the bilayer films compared to the gelatin film. The OPP/gelatin bilayer film was selected for further experiments because of its highest acceptance by panelists. If the amount of juice outflow was less than 350% of the mass of the gelatin layer, it was difficult for the gelatin film to separate from lamb. With the increase in essential oil concentration, the water absorption capacity decreased. The OPP/gelatin bilayer films with 20% mustard or 10% oregano essential oils inhibited the growth of bacteria in lamb and displayed better mechanical properties. Essential oil decreased the brightness and light transmittance of the bilayer films and made the film yellow. In conclusion, our results suggested that the active packaging system based on OPP/gelatin bilayer film was more suitable for raw lamb preservation than single-layer gelatin film or petroleum-derived plastic film, but need further study, including minimizing the amount of essential oil, enhancing the mechanical strength of the gelatin film after water absorption.

Effects of Bilayer Period on the Microhardness and Its Strengthening Mechanism of CrN/AlN Superlattice Coatings

  • Kim, SungMin;Kim, EunYoung;Kim, DongJun;La, JoungHyun;Lee, SangYul
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.6
    • /
    • pp.257-263
    • /
    • 2012
  • CrN/AlN multilayer coatings with various bilayer periods in the range of 1.8 to 7.4 nm were synthesized using a closed-field unbalanced magnetron sputtering method. Their crystalline structure, chemical compositions and mechanical properties have been investigated with Auger electron spectroscopy, X-ray diffractometry, atomic force microscopy, nanoindentation, scratch tests. The properties of the multilayer coatings varied strongly depending upon the magnitude of the bilayer period. The multilayer coating with a bilayer period of 1.8 nm showed the maximum hardness and an elastic modulus of approximately 37.6 and 417 GPa, respectively, which was 1.54 times higher than the hardness predicted by the rule of mixture from the CrN and AlN coatings. The hardness of the multilayer coating increased as the bilayer period decreased, i.e. as the rotation speed increased. The Hall-Petch type relationship, hardness being related to (1/periodicity)$^{-1/2}$, suggested by Lehoczky was confirmed for the CrN/AlN multilayer coatings with bilayer period close to the 5-10 nm range. With decreasing bilayer period, the surface morphology of the films became rougher and the critical load of films for adhesion strength gradually decreased.

Improved Efficiency by Insertion of TiO2 Interfacial Layer in the Bilayer Solar Cells

  • Xie, Lin;Yoon, Soyeon;Kim, Kyungkon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.432.1-432.1
    • /
    • 2016
  • We demonstrated that the power conversion efficiency (PCE) of bilayer solar cell was significantly enhanced by inserting interfacial layer between the organic bilayer film and the Al electrode. Moreover, the water contact angle shows that the bilayer solar cells suffer from the undesirable surface component which limits the charge transport to the Al electrode. The AFM measurement has revealed that the pre- and post-thermal annealing treatments results in different morphologies of the interfacial layer which is critical for the higher PCE of the bilayer solar cells. Furthermore we have investigated the electrical properties of the bilayer solar cells and obtained insights into the detailed device mechanisms. The transient photovoltage measurements suggests that the significantly enhanced Voc is caused by reducing the recombination at the interface between the organic films and the Al electrode. By inserting the TiO2 layer between the bilayer film and Al electrode, the open circuit voltage (Voc) was increased from 0.37 to 0.66V. Consequently, the power conversion efficiency (PCE) of bilayer solar cells was significantly enhanced from 1.23% to 3.71%. As the results, the TiO2 interfacial layer can be used to form an ohmic contact layer, serveing as a blocking layer to prevent the penetration of the Al, and to reduce the recombination at the interface.

  • PDF

Thermally Stable Antireflective Coatings based on Nanoporous Organosilicate

  • Kim, Su-Han;Cho, Jin-Han;Char, Kook-Heon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.282-282
    • /
    • 2006
  • Nanoporous organosilicate thin films were realized by the microphase separation of pore generating components mixed with an organosilicate matrix. The refractive index of such nanoporous organosilicate films can be tuned in the range of $1.40{\sim}1.22$. With a nanoporous single layer with n ${\sim}1.225,\;99.85\;%$ transmittance in the visible range was achieved. In order to overcome the limitation on the narrow wavelength for high transmittance imposed by single nanoporous thin films, bilayer thin films with different reflectance for each layer were prepared by inserting high refractive index layer with a refractive index of 1.447. It is demonstrated that the novel broadband antireflection coating with improved transmittance can be easily achieved by the nanoporous bilayer thin films described in present study.

  • PDF

Effect of Bilayer Thickness on Hardness of Ag/Ni Nanoscale Multilayers (Ag/Ni 나노다층박막의 경도에 미치는 Bilayer 두께의 영향)

  • Kang Bong Cheol;Kim Hee Yeoun;Kwon Oh Yeol;Lim Byung Kyu;Hong Soon Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.23-26
    • /
    • 2004
  • Ag/Ni multilayers with different bilayer thickness between 3 and 100 nm produced by DC magnetron puttering have been studied by cross-sectional TEM and nanoindentation. The micrograph shows perfect layered structure with sharp interfaces between Ag and Ni layers. Absolute hardness is calculated as a reference value to compare hardness of specimens regardless of indent depth. A hardness enhancement of nearly $100\%$ over the rule-of-mixtures values, calculated from the measured hardness of single Ag and Ni thin films, is observed. The hardness increases with decreasing bilayer thickness until 8nm. This enhancement shows a good agreement with Hall-Petch relation using grain size (one half of the bilayer thickness) confined within a layer. The deformation behavior can be explained by dislocation pile-up in smaller grains.

  • PDF

Ferroelectric, Leakage Current Properties of BiFeO3/Pb(Zr0.52Ti0.48)O3 Multilayer Thin Films Prepared by Chemical Solution Deposition (Chemical Solution Deposition 방법을 이용한 BiFeO3/Pb(Zr0.52Ti0.48)O3 다층박막의 전기적 특성에 대한 연구)

  • Cha, J.O.;Ahn, J.S.;Lee, K.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • $BiFeO_3/Pb(Zr_{0.52}Ti_{0.48})O_3$(BFO/PZT) multilayer thin films have been prepared on a Pt/Ti/$SiO_2$/Si(100) substrate by chemical solution deposition. BFO single layer, BFO/PZT bilayer and multilayer thin films were studied for comparison. X-ray diffraction analysis showed that the crystal structure of all films was multi-orientated perovskite phase without amorphous and impurity phase. The leakage current density at 500 kV/cm was reduced by approximately four and five orders of magnitude by bilayer and multilayer structure films, compared with BFO single layer film. The low leakage current density leads to saturated P-E hysteresis loops of bilayer and multilayer films. In BFO/PZT multlayer film, saturated remanent polarization of $44.3{\mu}C/cm^2$ was obtained at room temperature at 1 kHz with the coercive field($2E_c$) of 681.4 kV/cm.

A study for development of a dielectric protection layer in PDP (I) (The annealing characteristics of thickness-optimized $Al_2O_3/MgO$) (PDP용 유전체 보호막 재료 개발을 위한 연구 (I) (두께 최적화된 $Al_2O_3/MgO$의 열처리 특성 ))

  • Jeoung, Jin-Man;Yim, Ki-Ju;Shin, Kyung;Lee, Hyun-Yong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.117-120
    • /
    • 1998
  • In this study, $Al_2O_3/MgO$ bilayer was prepared with Electron-beam evaporation and the properties of the film was investigated in order to improve the property of MgO film, which is used for the protection layer in PDP(P1asma Display Panel). The thickness of $Al_2O_3/MgO$ bilayer was optimized by the Matrix Theory for the fabrication of antireflection structure for 5350A wavelength. The secondary electron emission yields of as-deposited film and annealed film were measured and compared, the bilayer was considered for the applicability as PDP. XRD showed the strong (200) primary peak of MgO. The intensity of (200) peak in the film annealed at 300C was decreased. As the result of SEM analysis for MgO films and Alz03 films, it is considered that the morphology of the films were improved of roughness and it were condensed by annealing.

  • PDF