Browse > Article
http://dx.doi.org/10.5757/JKVS.2010.19.1.052

Ferroelectric, Leakage Current Properties of BiFeO3/Pb(Zr0.52Ti0.48)O3 Multilayer Thin Films Prepared by Chemical Solution Deposition  

Cha, J.O. (Department of physics, Kyung Hee University)
Ahn, J.S. (Department of physics, Kyung Hee University)
Lee, K.B. (Dept. of Applied Physics & Electronics, Sangji University)
Publication Information
Journal of the Korean Vacuum Society / v.19, no.1, 2010 , pp. 52-57 More about this Journal
Abstract
$BiFeO_3/Pb(Zr_{0.52}Ti_{0.48})O_3$(BFO/PZT) multilayer thin films have been prepared on a Pt/Ti/$SiO_2$/Si(100) substrate by chemical solution deposition. BFO single layer, BFO/PZT bilayer and multilayer thin films were studied for comparison. X-ray diffraction analysis showed that the crystal structure of all films was multi-orientated perovskite phase without amorphous and impurity phase. The leakage current density at 500 kV/cm was reduced by approximately four and five orders of magnitude by bilayer and multilayer structure films, compared with BFO single layer film. The low leakage current density leads to saturated P-E hysteresis loops of bilayer and multilayer films. In BFO/PZT multlayer film, saturated remanent polarization of $44.3{\mu}C/cm^2$ was obtained at room temperature at 1 kHz with the coercive field($2E_c$) of 681.4 kV/cm.
Keywords
$BiFeO_3$ (BFO); $PbZrTiO_3$ (PZT); Thin film; Leakage current; Chemical solution deposition (CSD); Remanent polarization; Coercive field;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. A. Smolenskii and I. Chupis, Sov. Phys. Usp. 25, 475 (1982).   DOI
2 H. M. Kim, K. H. lee, J. S. Ahn, and K. B. Lee, J. Korean Phys. Soc. 50(6), 1740 (2007).   DOI
3 J. R. Cheng and L. E. Cross, J. Appl. Phys. 94, 5188 (2003).   DOI
4 F. Z. Huang, X. M. Lu, W. W. Lin, X. M. Wu, Y. Kai, and J. S. Zhu, Appl. Phys. Lett. 89, 242914 (2006).   DOI
5 S. Yakovlev, J. Zekonyte, C. H. Solterbeck, and M. Es-Souni, Thin Solid Films. 493, 24 (2005).   DOI
6 S. Iakovlev, C. H. Solterbeck, M. Kuhnke, and M. Es-Souni, J. Appl. Phys. 97, 094901 (2005).   DOI
7 V. R. Palkar and R. Pinto, Pramana J. Phys. 58, 1003 (2002).   DOI
8 S. K. Singh, K. Maruyama, and H. Ishiwara, J. Appl. Phys. 100, 064102 (2006).   DOI
9 X. J. Meng, J. L. Sun, X. G. Wang, T. Lin, M. J. Ha, S. L. Guo, and J. H. Chu, Appl. Phys. Lett. 81, 4035 (2002).   DOI
10 J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan S. B. Ogale, B. Liu, K Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wutting, and R. Ramesh, Science. 299, 1719 (2003).   DOI   ScienceOn
11 J. Li, J. Wang, M. Wutting, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84, 5261 (2004).   DOI
12 J. K. Kim, S. S. Kim, W. J. Kim, A. S. Bhalla, and R. Guo, Appl. Phys. Lett. 88, 222903 (2005).
13 F. Z. Huang, X. M. Lu, W. W. Lin, W. Cai, X. M. Wu, Y. Kan, H. Sang, and J. S. Zhu, Appl. Phys. Lett. 90, 252903 (2007).   DOI   ScienceOn
14 L. Hongri, S. Yuxia, and W. Xiuzhang, J. Phys. D. 41, 095302 (2008).   DOI
15 Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. liu, and X. G. Liu, Appl. Phys. Lett. 84, 1731 (2004).   DOI
16 D. Lee, M. G. Kim, S. Ryu, H. M. Jang, and S. G. Lee, Appl. Phys. Lett. 86, 222903 (2005).   DOI
17 J. G. Wu, G. Q. Kang, H. J. Liu, and J. Wang, Appl. Phys. Lett. 94, 172906 (2009).   DOI
18 M. M. Kumar, A. Srinivas, and S. V. Suryanarayana, J. Appl. Phys. 87, 855 (2000).   DOI
19 J. O. Cha, J. S. Ahn, and K. B. Lee, J. Korean Phys. Soc. 54, 844 (2009).   DOI