DOI QR코드

DOI QR Code

Ferroelectric, Leakage Current Properties of BiFeO3/Pb(Zr0.52Ti0.48)O3 Multilayer Thin Films Prepared by Chemical Solution Deposition

Chemical Solution Deposition 방법을 이용한 BiFeO3/Pb(Zr0.52Ti0.48)O3 다층박막의 전기적 특성에 대한 연구

  • Cha, J.O. (Department of physics, Kyung Hee University) ;
  • Ahn, J.S. (Department of physics, Kyung Hee University) ;
  • Lee, K.B. (Dept. of Applied Physics & Electronics, Sangji University)
  • 차정옥 (경희대학교 물리학과) ;
  • 안정선 (경희대학교 물리학과) ;
  • 이광배 (상지대학교 응용물리전자학과)
  • Published : 2010.01.30

Abstract

$BiFeO_3/Pb(Zr_{0.52}Ti_{0.48})O_3$(BFO/PZT) multilayer thin films have been prepared on a Pt/Ti/$SiO_2$/Si(100) substrate by chemical solution deposition. BFO single layer, BFO/PZT bilayer and multilayer thin films were studied for comparison. X-ray diffraction analysis showed that the crystal structure of all films was multi-orientated perovskite phase without amorphous and impurity phase. The leakage current density at 500 kV/cm was reduced by approximately four and five orders of magnitude by bilayer and multilayer structure films, compared with BFO single layer film. The low leakage current density leads to saturated P-E hysteresis loops of bilayer and multilayer films. In BFO/PZT multlayer film, saturated remanent polarization of $44.3{\mu}C/cm^2$ was obtained at room temperature at 1 kHz with the coercive field($2E_c$) of 681.4 kV/cm.

$BiFeO_3(BFO)/Pb(Zr_{0.52}Ti_{0.48})O_3$(PZT) bilayer와 multilayer의 다층구조를 만들어 전기적 특성을 측정하여 같은 두께의 BFO 단층박막과 비교해 보았다. BFO와 PZT 용액을 이용하였으며 chemical solution deposition 방법으로 Pt/Ti/$SiO_2$/Si(100) 기판위에 각 박막을 증착하였다. X-ray diffraction 분석을 통해 모든 박막이 다배향(multi-orientation) 페로브스카이트 (perovskite) 구조를 가졌음을 확인하였다. BFO/PZT Bilayer와 multilayer 박막들은 BFO 단층박막의 비해 누설전류 값이 500 kV/cm에서 약 4, 5차수 정도 감소했으며, 이로 인해 BFO/PZT 다층박막의 강유전체 특성이 크게 향상되었다. BFO/PZT multilayer 다층구조 박막의 경우 안정된 이력곡선(hysteresis loop)을 나타냈으며, 잔류 분극(remanent polarization)의 값은 $44.3{\mu}C/cm^2$이었으며, 항전계($2E_c$) 값은 681.4 kV/cm였다.

Keywords

References

  1. G. A. Smolenskii and I. Chupis, Sov. Phys. Usp. 25, 475 (1982). https://doi.org/10.1070/PU1982v025n07ABEH004570
  2. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan S. B. Ogale, B. Liu, K Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wutting, and R. Ramesh, Science. 299, 1719 (2003). https://doi.org/10.1126/science.1080615
  3. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. liu, and X. G. Liu, Appl. Phys. Lett. 84, 1731 (2004). https://doi.org/10.1063/1.1667612
  4. V. R. Palkar and R. Pinto, Pramana J. Phys. 58, 1003 (2002). https://doi.org/10.1007/s12043-002-0207-0
  5. J. Li, J. Wang, M. Wutting, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84, 5261 (2004). https://doi.org/10.1063/1.1764944
  6. S. K. Singh, K. Maruyama, and H. Ishiwara, J. Appl. Phys. 100, 064102 (2006). https://doi.org/10.1063/1.2338836
  7. J. K. Kim, S. S. Kim, W. J. Kim, A. S. Bhalla, and R. Guo, Appl. Phys. Lett. 88, 222903 (2005).
  8. D. Lee, M. G. Kim, S. Ryu, H. M. Jang, and S. G. Lee, Appl. Phys. Lett. 86, 222903 (2005). https://doi.org/10.1063/1.1941474
  9. F. Z. Huang, X. M. Lu, W. W. Lin, X. M. Wu, Y. Kai, and J. S. Zhu, Appl. Phys. Lett. 89, 242914 (2006). https://doi.org/10.1063/1.2404942
  10. J. R. Cheng and L. E. Cross, J. Appl. Phys. 94, 5188 (2003). https://doi.org/10.1063/1.1610802
  11. M. M. Kumar, A. Srinivas, and S. V. Suryanarayana, J. Appl. Phys. 87, 855 (2000). https://doi.org/10.1063/1.371953
  12. J. G. Wu, G. Q. Kang, H. J. Liu, and J. Wang, Appl. Phys. Lett. 94, 172906 (2009). https://doi.org/10.1063/1.3127519
  13. F. Z. Huang, X. M. Lu, W. W. Lin, W. Cai, X. M. Wu, Y. Kan, H. Sang, and J. S. Zhu, Appl. Phys. Lett. 90, 252903 (2007). https://doi.org/10.1063/1.2749873
  14. H. M. Kim, K. H. lee, J. S. Ahn, and K. B. Lee, J. Korean Phys. Soc. 50(6), 1740 (2007). https://doi.org/10.3938/jkps.50.1740
  15. X. J. Meng, J. L. Sun, X. G. Wang, T. Lin, M. J. Ha, S. L. Guo, and J. H. Chu, Appl. Phys. Lett. 81, 4035 (2002). https://doi.org/10.1063/1.1522833
  16. J. O. Cha, J. S. Ahn, and K. B. Lee, J. Korean Phys. Soc. 54, 844 (2009). https://doi.org/10.3938/jkps.54.844
  17. L. Hongri, S. Yuxia, and W. Xiuzhang, J. Phys. D. 41, 095302 (2008). https://doi.org/10.1088/0022-3727/41/9/095302
  18. S. Yakovlev, J. Zekonyte, C. H. Solterbeck, and M. Es-Souni, Thin Solid Films. 493, 24 (2005). https://doi.org/10.1016/j.tsf.2005.06.020
  19. S. Iakovlev, C. H. Solterbeck, M. Kuhnke, and M. Es-Souni, J. Appl. Phys. 97, 094901 (2005). https://doi.org/10.1063/1.1881776

Cited by

  1. Classification of Organs Using Impedance of Ultrasonic Surgical Knife to improve Surgical Efficiency vol.34, pp.3, 2013, https://doi.org/10.9718/JBER.2013.34.3.141
  2. Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures vol.84, 2016, https://doi.org/10.1016/j.pmatsci.2016.09.001