Seo, Jong-Hee;Kim, Dae-Yoon;Park, Sun-Ho;Park, Kae-Myoung
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2019.05a
/
pp.12-13
/
2019
Maritime Big Data Linkage System is a system for linking maritime related internal and external data used in Korean e-Navigation. It is possible to create data acquisition, conversion, storage, analysis, management application service by technology of maritime data generated from inside and outside, and it can be configured and processed in units of components. It is also possible to monitor the flow of data defined by the workflow.. Through this study, it is expected that e-navigation service will be able to link data more efficiently and easily.
Recently, as the amount of fine dust has risen rapidly, our interest is increasing day by day. It is virtually impossible to remove fine dust. However, it is best to predict the concentration of fine dust and minimize exposure to it. In this study, we developed a mathematical model that can predict the concentration of fine dust using various information related to the weather and air quality, which is provided in real time in 'Air Korea (http://www.airkorea.or.kr/)' and 'Weather Data Open Portal (https://data.kma.go.kr/).' In the mathematical model, various domestic seasonal variables and atmospheric state variables are extracted by multiple regression analysis. The parameters that have significant influence on the fine dust concentration are extracted, and using ANN (Artificial Neural Network) and SVM (Support Vector Machine), which are machine learning techniques, we proposed a prediction model. The proposed model can verify its effectiveness by using past dust and weather big data.
Chuluunsaikhan, Tserenpurev;Kim, Jeong-Hun;Choi, Jong-Hyeok;Nasridinov, Aziz
Annual Conference of KIPS
/
2021.11a
/
pp.474-475
/
2021
The accuracy of real-time video analysis system based on 3D skeleton data highly depends on the quality of data. This study proposes a methodology to distinguish noise in 3D skeleton frames using Intersection Over Union (IOU) method. IOU is metric that tells how similar two rectangles (i.e., boxes). Simply, the method decides a frame as noise or not by comparing the frame with a set of valid frames. Our proposed method distinguished noise in 3D skeleton frames with the accuracy of 99%. According to the result, our proposed method can be used to track noise in 3D skeleton frames.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.147-150
/
2023
본 논문에서는 코로나 19 확산에 따른 마스크 생산량 급증에 따라 폐마스크 수거함을 배치하는 경기도 용인시에 데이터를 기반으로 한 수거함 위치 추천을 목표하는 프로젝트를 소개한다. 해당 프로젝트는 전국 표준노드 링크와 건축물 용도 API를 활용했으며 데이터 전처리와 메모이제이션 기법 등으로 적절한 시간 안에 결과가 도출되도록 위치 추천 엔진을 개발했다. 개발 완료된 엔진으로부터 도출된 결과를 바탕으로 폐마스크 수거함을 배치한다면 보다 효과적인 결과로 이어질 것으로 기대된다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.161-163
/
2023
본 논문은 K-지방소멸지수를 바탕으로 지역 성장에 초점을 두어 지방소멸 대응 방향성을 제시한다. 연령별 추계인구 데이터와 총 요소 생산성 데이터를 비교하여 청년층의 감소가 지역 성장에 미치는 영향을 보여준다. 이에 따라 연도별 청년이 가장 많이 유출되는 지역을 샘플링하여 전출 사유를 알아보고 지역별 차별화된 대응 방향성을 제시한다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.165-166
/
2023
물환경정보시스템에서 하천의 수질을 측정한 자료를 대상으로 DMS(Digital Mosquito Monitoring System)가 설치된 위치와 수질 측정지 위치가 가까운 4개 지점에 대한 수질 측정 성분과 모기지수의 연관성을 분석하였다. 수질 기준 외 측정 성분과 모기지수의 상관관계는 총질소(T-N), 용존총질소(TDN), 인산염인이 연관성이 높은 것으로 나타났다. 이 중에서 인산염인은 모기지수와 양적 선형관계를 이루는데, 인산염은 수중에 부영양화를 일으키는 성분 중 하나다. 수질 측정지는 비료의 영향보다는 오수의 유입으로 인산염이 과잉공급되는 것으로 보였다. 따라서 매년 바뀌는 모기지수 산출식의 지연일자 데이터에 부영양화 지수를 넣음으로써 모기지수의 정확도를 보완할 수 있을 것으로 판단된다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.321-324
/
2023
본 연구는 광역시와 광역도 간의 개인적 요인과 건강수준 정도가 우울경험 여부에 영향을 미치는 변수의 중요도를 파악하고자 시도되었다. 본 연구의 자료는 질병관리청의 2021년 지역사회건강조사 데이터를 활용하였다. 광역시의 데이터는 4,602건을 이용하였고, 광역도는 19,545건의 데이터를 이용하였다. 자료 분석에 활용된 빅데이터는 R 4.3.0 for Windows를 활용하여 단어 빈도 분석과 machine learning기법인 Random Forest분석을 실시하였다. 연구결과, train 데이터와 test 데이터의 과적합(overfitting)의 문제는 발생하지 않았으며, machine learning 기법의 분류모델은 약 94% 수준으로 나타났다. 분석 결과 광역시와 광역도 간의 우울경험여부에 미치는 중요도가 각각 다르게 나타났다. 두 지역의 시민에게 미치는 우울경험의 원인을 다르게 접근함으로써 보다 더 효율적인 정책수립이 가능 할 것으로 판단된다.
The purpose of this study is to develop business models for current situational scenarios reflecting customer needs emphasize the need for implementing a logistics cooperation system by analyzing big data to strengthen SCM competitiveness capacities. For healthcare SCM competitiveness needed for the logistics cooperation usage intent, they were divided into product quality, price leadership, hand-over speed, and process flexibility for examination. The wordcloud results that analyzed major considerations to realize work efficiency between medical institutes, words like unexpected situations, information sharing, delivery, real-time, delivery, convenience, etc. were mentioned frequently. It can be analyzed as expressing the need to construct a system that can immediately respond to emergency situations on the weekends. Furthermore, in addition to pursuing communication and convenience, the importance of real-time information sharing that can share to the efficiency of inventory management were evident. Accordingly, it is judged that it is necessary to aim for a business model that can enhance visibility of the logistics pipeline in real-time using big data analysis on site. By analyzing the effects of the adaptability of a supply chain network for healthcare SCM competitiveness, it was revealed that obtaining competitive capacities is possible through the implementation of logistics cooperation. Stronger partnerships such as logistics cooperation will lead to SCM competitive capacities. It will be necessary to strengthen SCM competitiveness by searching for a strategic approach among companies in a direction that can promote mutual partnerships among companies using the joint logistics system of medical institutes. In particular, it will be necessary to search for ways to utilize HCSM through big data analysis according to the construction of a logistics cooperation system.
The performance of natural language processing is rapidly improving due to the recent development and application of machine learning and deep learning technologies, and as a result, the field of application is expanding. In particular, as the demand for analysis on unstructured text data increases, interest in NLP(Natural Language Processing) is also increasing. However, due to the complexity and difficulty of the natural language preprocessing process and machine learning and deep learning theories, there are still high barriers to the use of natural language processing. In this paper, for an overall understanding of NLP, by examining the main fields of NLP that are currently being actively researched and the current state of major technologies centered on machine learning and deep learning, We want to provide a foundation to understand and utilize NLP more easily. Therefore, we investigated the change of NLP in AI(artificial intelligence) through the changes of the taxonomy of AI technology. The main areas of NLP which consists of language model, text classification, text generation, document summarization, question answering and machine translation were explained with state of the art deep learning models. In addition, major deep learning models utilized in NLP were explained, and data sets and evaluation measures for performance evaluation were summarized. We hope researchers who want to utilize NLP for various purposes in their field be able to understand the overall technical status and the main technologies of NLP through this paper.
Kim, Tae-Hun;Lim, Seong-Won;Koh, Jin-Gwang;Lee, Jae-Hak
The Journal of Bigdata
/
v.5
no.2
/
pp.77-84
/
2020
In this study, we conducted a study on the win-loss predicton analysis of korean professional baseball by artificial intelligence models. Based on the model, we predicted the winner as well as each team's final rank in the league. Additionally, we developed a website for viewers' understanding. In each game's first, third, and fifth inning, we analyze to select the best model that performs the highest accuracy and minimizes errors. Based on the result, we generate the rankings. We used the predicted data started from May 5, the season's opening day, to August 30, 2020 to generate the rankings. In the games which Kia Tigers did not play, however, we used actual games' results in the data. KNN and AdaBoost selected the most optimized machine learning model. As a result, we observe a decreasing trend of the predicted results' ranking error as the season progresses. The deep learning model recorded 89% of the model accuracy. It provides the same result of decreasing ranking error trends of the predicted results that we observe in the machine learning model. We estimate that this study's result applies to future KBO predictions as well as other fields. We expect broadcasting enhancements by posting the predicted winning percentage per inning which is generated by AI algorism. We expect this will bring new interest to the KBO fans. Furthermore, the prediction generated at each inning would provide insights to teams so that they can analyze data and come up with successful strategies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.